中考数学专题复习之旋转题型.doc
文本预览下载声明
中考数学专题复习之:旋转型题
1、等腰△ABC,AB=AC=8,∠BAC=120°,P为BC的中点,小慧拿着含300角的透明三角板,使300角的顶点落在点P,三角板绕P点旋转.
(1)如图a,当三角板的两边分别交AB、AC于点E、F时.求证:△BPE∽△CFP;
(2)操作:将三角板绕点P旋转到图b情形时,三角板的两边分别交BA的延长线、边AC于点E、F.
探究1:△BPE与△CFP还相似吗?(只需写出结论)
探究2:连结EF,△BPE与△PFE是否相似?请说明理由;
设EF=m,△EPF的面积为S,试用m的代数式表示S.
2、图1是边长分别为4和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).
(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连结AD、BE,CE的延长线交AB于F(图2);
探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论.
(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图3);
探究:设△PQR移动的时间为x秒,△PQR与△ABC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围.
(3)操作:图1中△C′D′E′固定,将△ABC移动,使顶点C落在C′E′的中点,边BC交D′E′于点M,边AC交D′C′于点N,设∠AC C′=α(30°<α<90°)(图4);
探究:在图4中,线段C′N·E′M的值是否随α的变化而变化?如果没有变化,请你求出C′N·E′M的值,如果有变化,请你说明理由.
3、将两块含30°角且大小相同的直角三角板如图1摆放。
(1)将图1中△绕点C顺时针旋转45°得图2,点与AB的交点,求证:;
(2)将图2中△绕点C顺时针旋转30°到△(如图3),点与AB的交点。线段之间存在一个确定的等量关系,请你写出这个关系式并说明理由;
(3)将图3中线段绕点C顺时针旋转60°到(如图4),连结,
求证:⊥AB.
4、操作:在△ABC中,AC=BC=2,∠C=900,将一块等腰三角形板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点。图①,②,③是旋转三角板得到的图形中的3种情况。研究:
三角板绕点P旋转,观察线段PD和PE之间有什么数量关系?并结合图②加以证明。
三角板绕点P旋转,是否能居为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由。
(3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图④加以证明。
5、(湖南常德卷)把两块全等的直角三角形和叠放在一起,使三角板的锐角顶点与三角板的斜边中点重合,其中,,,把三角板固定不动,让三角板绕点旋转,设射线与射线相交于点,射线与线段相交于点.
(1)如图1,当射线经过点,即点与点重合时,易证.此时, .
(2)将三角板由图1所示的位置绕点沿逆时针方向旋转,设旋转角为.其中
,问的值是否改变?说明你的理由.
(3)在(2)的条件下,设,两块三角板重叠面积为,求与的函数关系式.(图2,图3供解题用)
6、已知:将一副三角板(Rt⊿ABC和Rt⊿DEF)如图(1)摆放,点E、A、D、B在一条直线上,且D是AB的中点。将Rt⊿DEF绕点D顺时针方向旋转角α(00α900)
7、如图12-1所示,在中,,,为的中点,动点在边上自由移动,动点在边上自由移动.
(1)点的移动过程中,是否能成为的等腰三角形?若能,请指出为等腰三角形时动点的位置.若不能,请说明理由.
(2)当时,设,,求与之间的函数解析式,写出的取值范围.
(3)在满足(2)中的条件时,若以为圆心的圆与相切(如图12-2),试探究直线与⊙O的位置关系,并证明你的结论.
8、如图,在Rt⊿ABC中,AB=AC=2,∠BAC=900 ,将直角三角板EPF的直角顶点P放在线段BC的中点上,以点P为旋转中心,转动三角板的两直角边PE、PF分别与线段AC、AB相交,交点分别为N、M,线段MN、AP相交于点D。(1)请你猜出线段PN与PM的大小关系,并说明理由;(2)设
显示全部