文档详情

人教版六年级上册数学系统预习知识点.doc

发布:2018-09-03约8.87千字共13页下载文档
文本预览下载声明
PAGE 分数乘法. 一、分数乘法 (一)、分数乘法的计算法则: 1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分) 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。 3、为了计算简便,能约分的要先约分,再计算。 注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 (二)、规律:(乘法中比较大小时.) 一个数(0除外)乘大于1的数,积大于这个数。 ????? 一个数(0除外)乘小于1的数(0除外),积小于这个数。 ????? 一个数(0除外)乘1,积等于这个数。 (三)、分数混合运算的运算顺序和整数的运算顺序相同.。 (四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。 乘法交换律: a × b = b × a 乘法结合律: ( a × b )×c = a × ( b × c ) 乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c 二、分数乘法的解决问题 (已知单位“1”的量(用乘法),求单位“1”的几分之几是多少) 1、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面 2、求一个数的几倍: 一个数×几倍; 求一个数的几分之几是多少: 一个数×。 3、写数量关系式技巧: (1)“的” 相当于 “×” “占”、“是”、“比”相当于“ = ” (2)分率前是“的”: 单位“1”的量×分率=分率对应量 (3)分率前是“多或少”的意思: 单位“1”的量×(1分率)=分率对应量 三、倒数 1、倒数的意义: 乘积是1的两个数互为倒数。 强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。 (要说清谁是谁的倒数)。 2、求倒数的方法: (1)、求分数的倒数:交换分子分母的位置。(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。(3)、求带分数的倒数:把带分数化为假分数,再求倒数。 (4)、求小数的倒数: 把小数化为分数,再求倒数。 3、1的倒数是1; 0没有倒数。 因为1×1=1;0乘任何数都得0,(分母不能为0) 4、 对于任意数,它的倒数为;非零整数的倒数为;分数的倒数是; 5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。 分数除法 分数除法 1、分数除法的意义: 分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。 2、分数除法的计算法则: 除以一个不为0的数,等于乘这个数的倒数。 规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数; (2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。 “”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。 二、分数除法解决问题 (未知单位“1”的量(用除法): 已知单位“1”的几分之几是多少,求单位“1”的量。 ) 1、数量关系式和分数乘法解决问题中的关系式相同: (1)分率前是“的”: 单位“1”的量×分率=分率对应量 (2)分率前是“多或少”的意思: 单位“1”的量×(1分率)=分率对应量 2、解法:(建议:最好用方程解答) (1)方程: 根据数量关系式设未知量为X,用方程解答。 (2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量 3、求一个数是另一个数的几分之几:就 一个数÷另一个数 4、求一个数比另一个数多(少)几分之几: ① 求多几分之几:大数÷小数 – 1 ② 求少几分之几: 1 - 小数÷大数 或① 求多几分之几(大数-小数)÷小数② 求少几分之几:(大数-小数)÷大数 三、比和比的应用 (一)、比的意义 1、比的意义:两个数相除又叫做两个数的比。 2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。 例如 15 :10 = 15÷10= (比值通常用分数表示,也可以用小数或整数表示) ∶ ∶ ∶ ∶ 前项 比号 后项 比值 3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例: 路程÷速度=时间。 4、区分比和比值 比:表示两个数的关系,可以写成比的形式,也可以用分数表示。 比值:相当于商,是一个数,可以是整数,分数,也可以是小数。 5、根据分数与除法的关系,两个数的
显示全部
相似文档