运筹学与最优化方法第5章课件.ppt
文本预览下载声明
第 五 章 无约束最优化方法 第五章 无约束最优化 (f) min f(x) f : Rn→R 5.1 最优性条件 设 f 连续可微 必要条件:若x*-l.opt. 则▽f(x*)=0 (驻点)。 当 f 凸时, x*-l.opt. ←→ ▽f(x*)=0 注意: f(x) ≥f(x*)+ ▽Tf(x*)(x-x*), ? x. 故 f(x*) ≤f(x), ? x. ( 由于▽Tf(x*) =0) 5.2 最速下降法 在迭代点 x(k) 取方向 d(k)= -▽f(x(k) ) 精确一维搜索 最 速 下降法:梯度方向函数值变化最快的方向 第五章 无约束最优化 5.2 最速下降法(续) 第五章 无约束最优化 5.2 最速下降法(续) 特点:全局收敛,线性收敛,易产生扭摆现象而造成早停。 (当x(k)距最优点较远时,速度快,而接近最优点时,速度下降) 原因:f(x)=f(x(k))+▽Tf(x(k))(x-x(k)) + o||x-x(k)|| 当 x(k)接近 l.opt.时 ▽f(x(k) ) →0,于是高阶项 o||x-x(k)||的影响可能超过▽Tf(x(k))(x-x(k)) 。 5.3 Newton法及其修正 一、 Newton法: 设f(x)二阶可微,取f(x)在x(k)点附近的二阶Taylor近似函数: qk(x)=f(x(k))+ ▽Tf(x(k))(x-x(k)) +1/2 (x-x(k))T▽2f(x(k)) (x-x(k)) 求驻点: ▽ qk(x)= ▽f(x(k))+ ▽2f(x(k)) (x-x(k))=0 第五章 无约束最优化 Newton法: (续) 当▽2f(x(k)) 正定时,有极小点: x(k+1)=x(k)-[▽2f(x(k)) ]-1 ▽f(x(k)) ——Newton迭代公式 实用中常用 ▽2f(x(k)) S= -▽f(x(k)) 解得s(k) x(k+1)=x(k)+s(k) 第五章 无约束最优化 Newton法: (续) 特点:二阶收敛,局部收敛。 (当x(k)充分接近x*时,局部函数可用正定二次函数很好地近似,故收敛很快) 二次终结性:当f(x)为正定二次函数时,从任意初始点可一步迭代达到最优解。 设f(x)=1/2xTQx+PTx+r , Qn×n对称正定,P∈ Rn, r∈ R. ? x(1), ▽f(x(1))=Q x(1) +P ▽2f(x(1))=Q 迭代: x(2) = x(1) - Q –1(Qx(1) +P) = - Q –1 P (驻点即opt.) 主要缺点: (1)局部收敛 (2)用到二阶Hesse阵,且要求正定 (3)需计算Hesse阵逆或解n阶线性方程组,计算量大 第五章 无约束最优化 5.3 Newton法及其修正 二、 Newton法的改进: (1)为减小工作量,取m(正整数),使每m次迭代使用同一个Hesse阵,迭代公式变为: x(km+j+1)=x(km+j)-[▽2f(x(km))]-1 ▽f(x(km+j)) j=0,1,2, …,m-1 , k=0,1,2, … 特点:收敛速度随m的增大而下降 m=1时即Newton法, m→∞ 即线性收敛。 (2)带线性搜索的Newton法: 在Newton迭代中,取d(k)= -[▽2f(x(k)) ]-1 ▽f(x(k)) , 加入线性搜索:min f(x(k)+λk d(k)) 求得λk , x(k+1)=x(k)+λkd(k) 特点:可改善局部收敛性,当d(k)为函数上升方向时,可向负方向搜索,但可能出现± d(k)均非下降方向的情况。 第五章 无约束最优化 5.3 Newton法及其修正 二、 Newton法的改进: (续) (3)Goldstein-Price方法(G-P法): 取 d(k)= -[▽2f(x(k)) ]-1 ▽f(x(k)) ,
显示全部