新能源汽车课件——第4章 电动汽车电机驱动系统图文.ppt
文本预览下载声明
第 * 页 4.6.1 开关磁阻电动机的结构与特点 2. 开关磁阻电动机的特点 开关磁阻电动机与其它电动机相比,具有以下优点: (1) 可控参数多,调速性能好。可控参数有主开关开通角、主开关关断角、相电流幅值、直流电源电压,控制方便,可四象限运行,容易实现正转、反转和电动、制动等特定的调节控制; (2) 结构简单,成本低。开关磁阻电动机转子无绕组,也不加永久磁铁,定子为集中绕组,永磁电动机及感应电动机都简单,制造和维护方便;它的功率变换器比较简单,主开关元件数较少,电子器件少; (3) 损耗小,运转效率高。开关磁阻电动机的转子不存在励磁及转差损耗,功率变换器元器件少,相应的损耗也小;控制灵活,易于在很宽转速范围内实现高效节能控制; (4) 起动转矩大,起动电流小。在15%额定电流的情况下就能达到100%的起动转矩。第 * 页 4.6.1 开关磁阻电动机的结构与特点 由于开关磁阻电动机的特殊结构和工作方式,也存在一些缺点: (1) 转矩脉动现象较大; (2) 振动和噪声相对较大,特别是在负载运行的时候; (3) 电动机的出线头相对较多,还有位置检测器出线端; (4) 电动机的数学模型比较复杂,其准确的数学模型较难建立; (5) 控制复杂,依赖于电动机的结构。第 * 页 4.6.2 开关磁阻电动机工作原理与运行特性 1.开关磁阻电动机的工作原理 开关磁阻电动机的工作原理如图所示。图中,Sl、S2是电子开关;VD1、VD2是二极管,U是直流电源。第 * 页 4.6.2 开关磁阻电动机工作原理与运行特性 2.开关磁阻电动机的运行特性 开关磁阻电动机运行特性可分为三个区域:恒转矩区、恒功率区、自然特性区(串励特性区),如图所示。第 * 页 4.6.3 开关磁阻电动机的控制 1.角度位置控制方式(APC) 角度位置控制是在加在绕组上的电压一定的情况下,通过改变绕组上主开关的开通角和关断角,来改变绕组的通、断电时刻,调节相电流的波形,实现转速闭环控制。 根据电动势平衡方程式可知,当电动机转速较高时,旋转电动势较大,则此时电流上升率下降,各相的主开关器件的导通时间较短,电动机绕组的相电流不易上升,电流相对较小,便于使用角度位置控制方式。 因为开通角和关断角都可调节,角度位置控制可分为:变开通角、变关断角和同时改变开通角及关断角三种方式。改变开通角,可改变电流波形的宽度、峰值和有效值的大小,还可改变电流波形与电感波形的相对位置,从而改变了电动机的转矩和转速。而关断角一般不影响电流的峰值,但可改变电流波形的宽度及其与电感曲线的相对位置,进而改变电流的有效值。故一般采用固定关断角、改变开通角的控制方式。第 * 页 4.6.3 开关磁阻电动机的控制 根据SRM的转矩特性分析可知,当电流波形主要位于电感的上升区时,产生的平均电磁转矩为正,电动机运行在电动状态;当电流波形主要位于电感的下降段时,产生的平均电磁转矩为负,电动机工作在制动状态。而通过对开通角、关断角的控制,可以使电流的波形处在绕组电感波形的不同位置。因此,可以用控制开通角、关断角的方式来使电动机运行在不同的状态。 角度位置控制的优点在于:转矩调节的范围宽;可同时多相通电,以增加电动机的输出转矩,同时减小了转矩波动;通过角度的优化,能实现效率最优控制或转矩最优控制。 根据上面的分析可知,此法不适于低速场合。因为在低速时,旋转电动势较小,使电流峰值增大,必须采取相应措施进行限流,故一般用于转速较高的场合。第 * 页 4.6.3 开关磁阻电动机的控制 2.电流斩波控制 根据电动势平衡方程式可知,电动机低速运行特别是启动时,旋转电动势引起的压降很小,相电流上升快,为避免过大的电流脉冲对功率开关器件及电动机造成损坏,需要对电流峰值进行限定,因此,可采用电流的斩波控制,获取恒转矩的机械特性。电流斩波控制一般不会对开通、关断角进行控制,它将直接选择在每相的特定导通位置对电流进行斩波控制。 目前常用的有两种方案:对电流上、下限进行限制的控制,及限制电流上限值和恒定关断时间的控制。 该控制的优点在于:它适用于电动机的低速调速系统,可以控制电流峰值的增长,并有很好的电流调节作用:因每相电流波形会呈现出较宽的平顶状,使得产生的转矩比较平稳,转矩的波动相应地比其它控制方式要小。 然而,由于电流的峰值受到了限制,当电动机转速在负载的扰动作用下发生变化时,电流的峰值无法做出相应的改变,使得系统的特性比较软,因此系统在负载扰动下的动态响应很缓慢。第 * 页 4.6.3 开关磁阻电动机的控制 3.电压控制(VC) VC方式是保持开通角、关断角不变的前提下,使功率开关器件工作在脉冲宽度调制(PWM)方式。通过调节PWM波的占空比,来调整加在绕组两端电压的平均值,进而改变绕组电流的大小,实现对转速的调节。若增大调制脉冲
显示全部