初二数学下册必背知识点优秀6篇.docx
初二数学下册必背知识点优秀6篇
篇一:初二下册数学知识点归纳篇一
第六章平行四边形
1、平行四边形的性质
①两组对边分别平行的四边形叫平行四边形
②平行四边形不相邻的两个顶点连成的线段叫做它的对角线
③平行四边形是中心对称图形,两条对角线的交点是它的对称中心
④定理:平行四边形的对边,对角相等
⑤平行四边形的对角线互相平分
2、平行四边形的判断
①定理:两组对边分别相等的四边形是平行四边形
②定理:一组对边平行且相等的四边形是平行四边形
③定理:对角线互相平分的四边形是平行四边形
④如果两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,则这个距离称为平行线之间的距离
3、三角形的中位线
①连接三角形两边中点的线段叫做三角形的中位线
②三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半
4、多边形的内角和与外角和
①定理:n边形的内角和等于(n-2)·180°
②多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在这个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和
③定理:多边形的外角和都等于360°
篇二:初二下册数学知识点篇二
第二章一元一次不等式与一元一次不等式组
1、不等关系
2、不等式的基本性\\质
①不等式的基本性质一:不等式的两边都加(或减)同一个整式,不等号的方向不变
②不等式的基本性质二:不等式的两边都乘(或除以)同一个正数,不等号的方向不变
③不等式的基本性质三:不等式的两边都乘(除以)同一个负数,不等号的方向改变
3、不等式的解集
①能使不等式成立的未知数的值,叫做不等式的解
②一个含有不等式所有的解,组成这个不等式的解集
③求不等式解集的过程叫做解不等式
4、一元一次不等式
①含义:不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1
5、一元一次不等式与一次函数
6、一元一次不等式组
①一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组
②一元一次不等式组中各个不相等的解集的公共部分,叫做这个一元一次不等式组的解集,求不等式组解集的过程,叫做解不等式组
篇三:八年级下册数学知识点篇三
1、分式:
(1)分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式。
(2)分式是否有意义的条件:分式的分母是否等于0,有意义则分母不为0,无意义则分母为0。
(3)分式值为零的条件:分式A/B=0的条件是A=0,且B≠0。
注意:求出使分子为0的字母的值,一定要注意检验这个字母的值是否使分母的值为0,一般当分母的值不为0时,就是所要求的字母的值。
(4)分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
(5)分式的通分:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。
注意:通分的关键是确定几个式子的最简公分母。几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。求最简公分母时应注意以下几点:
●“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;
●如果各分母的系数都是整数时,取它们系数的最小公倍数作为最简公分母的系数;
●如果分母是多项式,一般应先分解因式。
(6)分式的约分:根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。
注意:约分的关键是找出分式中分子和分母的公因式
◆(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母分解因式,然后再约分;
◆(2)找公因式的方法:
①当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;
②当分子、分母都是多项式时,先把多项式因式分解。
2、分式方程
(1)分式方程的概念
◆a、分式方程的重要特征:
①是等式;
②方程里含有分母;
③分母中含有未知数。
◆b、分式方程和整式方程的区别:在于分母中是否有未知数。
(2)分式方程的解法
解分式方程的一般步骤:
a、方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);
b、解整式方程,求出整式方程的解;
c、检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解。
注意:解分式方程一定要检验根,这种检