弹塑性断裂力学讲义(ABAQUS).docx
Elastic-PlasticFractureMechanics
ProfessorS.Suresh
ElasticPlastic
Fracture
Previously,wehaveanalyzedproblemsinwhichtheplasticzone
wassmallcomparedtothespecimendimensions(smallscale
yielding).Intoday’slecturewepresenttechniquesforanalyzing
situationsinwhichtherecanbelargescaleyielding,and
determineexpressionsforthestresscomponentsinsidethe
plasticzone.Wewillbeginwithadiscussionoftheintegral.
FatigueandFracture1
Derivation
Integral
Theintegralisalineintegral(path-independent)aroundthe
cracktip.Ithasenormoussigni?canceinelastic-plasticfracture
mechanics.KeyReference:J.R.Rice,JournalofApplied
Mechanics,1968.
(Relatedworks:Eshelby,ProgressinSolidStatePhysics1956;
Sanders,JournalofAppliedMechanics,1960;Cherepanov,
InternationalJournalofSolidsandStructures,1969)
FatigueandFracture2
Integral
Derivation
Continued
Considerthepatharoundthecracktipshownbelow:
FatigueandFracture3
Integral
Derivation
Continued
Wewillusethefollowingvariables:
=cracklength.
=acurvelinkingtheloweranduppercracksurfaces.
=anelementofarconthiscurve.
=tractionvectoronthiscurvede?nedinrelationtoanoutward
normalunitvector,i.e..
=correspondingdisplacementvector.
Weconsiderasmallstrainanalysis;weneglectany
deformation-inducedbluntingofcracktip.
FatigueandFracture4
Integral
Derivation
Continued
Weusethedeformationtheoryofplasticity(equivalentto
non-linearelasticity).The(reversible)stress-strainresponseis
depictedschematicallybelow:
FatigueandFracture5
Integral
Derivation
Continued
Forproportionalloadingdeformationtheoryand?ow
theory(incrementaltheoryofplasticity)giveresultsthatare
comparable(i.e.formonotonicloading,stationarycracks).
Notappropriateforsituationswheresigni?cantunloadingoccurs.
Thetotalmechanicalpotentialenergyofthecrackedbodyis
Thisrepresentsthesumofthest