文档详情

实际问题与一元二次方程题型归纳总结.doc.doc

发布:2017-05-07约4.84千字共8页下载文档
文本预览下载声明
实际问题与一元二次方程题型归纳总结 一、列一元二次方程解应用题的一般步骤: 与列一元一次方程解应用题的步骤类似,列一元二次方程方程解实际问题的一般步骤也可归纳为:“审、找、设、列、解、验、答”七个步骤。 (1)审:审清题意,弄清已知量与未知量; (2)找:找出等量关系; (3)设:设未知数,有直接和间接两种设法,因题而异; (4)列:列出一元二次方程; (5)解:求出所列方程的解; (6)验:检验方程的解是否正确,是否符合题意; (7)答:作答。 二、典型题型 1、数字问题 例1、有两个连续整数,它们的平方和为25,求这两个数。 例2、有一个两位数,它的个位上的数字与十位上的数字的和是6,如果把它的个位上的数字 与十位上的数字调换位置,所得的两位数乘以原来的两位数所得的积就等于1008,求调换位置后得到的两位数。 练习:1、两个连续的整数的积是156,求这两个数。 2、一个两位数等于它个位上数字的平方,个位上的数字比十位上的数字大3,则这个两位数为 ( )A. 25 B. 36 C. 25或36 D. -25或-36 2、传播问题:公式:(a+x)n=M 其中a为传染源(一般a=1),n为传染轮数,M为最后得病总人数 例3、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人? 练习:有一个人患了流感,经过两轮传染后共有196人患了流感,每轮传染中平均一个人传染了几个人?如果按照这样的传染速度,三轮传染后有多少人患流感? 3、相互问题(循环、握手、互赠礼品等)问题 循环问题:又可分为单循环问题n(n-1),双循环问题n(n-1)和复杂循环问题2n(n-3) 例4、(1)参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛? (2)参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有多少个队参加比赛? 例5、一次会上,每两个参加会议的人都相互握手一次,一共握手66,请问参加会议的人数共有多少人? 例6、生物兴趣小组的同学,将自己收集的标本向本组其他同学各赠送1件,全组共互赠了182件,设全组有x个同学,则根据题意列出的方程是( ) B. C. D. 练习:1、甲A联赛中的每两队之间都要进行两次比赛,若某一赛季共比赛110场,则联赛中共有多少个队参加比赛? 2、参加一次聚会的每两人都握了一次手,所有人共握手15次,有多少人参加聚会? 3、初三毕业晚会时每人互相送照片一张,一共要90张照片,有多少人? 4、平均增长率问题:M=a(1±x)n , n为增长或降低次数 , M为最后产量,a为基数,x为平均增长率或降低率 例7、某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。 例8、市政府为了解决市民看病难的问题,决定下调药品的价格。某种药品经过连续两次降价后,由每盒200元下调至128元,则这种药品平均每次降价的百分率为多少? 练习:1、恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了1936万元,求这两个月的平均增长率30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件? 例10、益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(35010a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?260元时,月销售量为45吨。该经销店为提高经营利润,准备采取降价的方式进行促销。经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨。综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元。(1)当每吨售价是240元时,计算此时的月销售量;(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元。(3)小静说:“当月利润最大时,月销售额也最大。”你认为对吗?请说明理由。 2、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克. 经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克. 现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元? 6、面积问题 例
显示全部
相似文档