病毒类生物制品的连续生产工艺概述.docx
病毒类生物制品的连续生产工艺概述
与批次和补料分批培养不同,连续细胞培养通过补充新鲜培养基,同时去除耗竭培养基,维持生物反应器内恒定的体积,通常可达到极高的细胞密度,这就意味着培养基灌流速率高于细胞生产速率,细胞需被截留在生物反应器内。目前市面上有不同类型的细胞截留装置。但是,最常使用的是切向流过滤(TFF)或交替式切向流(ATF)。
早在80年代后期和90年代初,连续培养已被考虑用于生物制药,彼时,连续生产主要用于生产不稳定的蛋白质。但随着对生物药需求的增加以及市场竞争的加剧,行业开始寻求更高效、更灵活的工艺和设施。为解决这种新的挑战,制药行业开始重新审视连续培养作为一种解决方案的可能性。
使用配置交替式切向流(ATF)过滤的搅拌罐生物反应器进行灌流培养,以进行病毒颗粒连续生产时的反应器配置(S.Gutierrez-Granados,etal.2018)。尽管连续培养的操作更加复杂,但与批次和补料分批相比,其优势也非常明显。连续补加培养基可获得更高的细胞密度。与此同时,可能会影响细胞生长或蛋白质生产的代谢副产物被连续去除。这通常可转化成更高的单位体积产量,相应地降低生物反应器尺寸、降低生产线占地以及成本投入,而生产批次的大小由操作时间决定,而不是生物反应器的大小。产物可连续收获,这对于不稳定的蛋白质来说是一项明显的优势,因如其在生物反应器滞留时间过长,可能因为培养的条件,而损失其质量属性。总体来说,相比其它培养模式,连续培养可强化工艺,增强操作的灵活性,而降低成本。过去一段时间,连续培养在蛋白质和单克隆抗体生产上的应用已经得到了很大的发展,而参考原文关注了使用连续培养进行病毒(疫苗和病毒载体)的生产,以及这种培养模式怎样操作和优化,以提高基于细胞培养的病毒性产物的产量和质量。
1、病毒性疫苗的连续生产
基于细胞培养的病毒性疫苗包括相对“经典”的减毒和灭活病毒以及新一代的非感染性病毒样颗粒(VLP)。这种多样性也反映在其生产方法:一些疫苗通过感染宿主细胞生产,而另一些使用稳定或瞬时异源性蛋白质表达方法生产。不管哪种方法,都需要克服相应的生产挑战,包括提高滴度、获得更加经济的工艺,以及保证产物质量,后者会直接影响疫苗免疫源性和安全性。常见生产方式(瞬时转染、病毒感染及稳定细胞系)示意图(S.Gutierrez-Granados,etal.2018)。连续培养为基于细胞的病毒性疫苗生产工艺的优化提供了解决方案。已有关于不同连续培养方法的报导。
2、用于疫苗生产的灌流培养
与重组蛋白和单克隆抗体不同的是,病毒结构的复杂性妨碍了宿主细胞生产大量病毒的能力,所以,细胞特异性病毒产率通常较低。出于此原因,为细胞连续提供新鲜的营养物质,同时去除代谢副产物,有助于提高细胞所能生产的病毒数量。Nikolay等在批次摇瓶中以BHK-21悬浮细胞生产寨卡病毒,比使用贴壁Vero细胞的标准生产,产率要低(9x10^3PFU/mLvs.~10^7PFU/mL)。为提高滴度,作者使用ATF系统进行了灌流培养。感染前,通过将灌流速率从0.15VVD提升至0.42VVD,细胞生长至12x10^6cells/mL。感染后,灌流维持6天,达到3.9x10^7PFU/mL的生产结果。尽管相比贴壁细胞培养,悬浮细胞的特异性病毒产率仍较低,但是建立了一种用于寨卡病毒的产量足够的可放大生产工艺。Cervera等开发了一种可强化人免疫缺陷病毒(HIV)VLP生产的新方法,使用重复瞬时转染和培养基置换的HEK293细胞培养,命名为ExtendedGeneExpression(EGE)。转染后,每48小时置换培养基,相比72小时的批次培养,蛋白质生产可提高8倍。而结合两次再转染,可提高12倍。在配有灌流的1.3L生物反应器上成功操作了这种方法,以0.5VVD的速率置换培养基,使用连续灌流,细胞可生长至更高的细胞密度(~16x10^6cells/mL),高于使用不连续培养基置换的摇瓶培养,同时维持VLP滴度。所以,EGE是一种可强化瞬时转染工艺的非常有潜力的策略,可进一步优化以获得更高的VLP滴度。Fontana等使用稳定的HEK293细胞系生产了狂犬病毒样颗粒。作者使用5L生物反应器,以灌流模式,培养细胞20天,使用旋转滤器截留细胞。使用这种方法,培养密度可达到16x10^6cells/mL,相比批次模式,细胞密度翻倍。由于基于VLP的疫苗可稳定生产,生物反应器内细胞越多,即直接意味着可生产更多的产物。这可降低生产工艺的成本,进而显著影响动物疫苗的生产。
3、通过灌流克服细胞密度效应
细胞密度效应是一种广泛报导的现象,即细胞在高密度(0.5-5x10^6cells/mL以上,取决于每种特定的细胞系)条件下感染或转染时,细胞特异性产率会显著降低。造成这种现象的主要假