导数压轴题题型归纳(一).doc
文本预览下载声明
导数压轴题题型归纳
1. 高考命题回顾
例1已知函数f(x)=ex-ln(x+m).(2013全国新课标Ⅱ卷)
(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;
(2)当m≤2时,证明f(x)0.
例2已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2(2013全国新课标Ⅰ卷)
(Ⅰ)求a,b,c,d的值
(Ⅱ)若x≥-2时, ,求k的取值范围。
2. 在解题中常用的有关结论※
(1)曲线在处的切线的斜率等于,且切线方程为。
(2)若可导函数在 处取得极值,则。反之,不成立。
(3)对于可导函数,不等式的解集决定函数的递增(减)区间。
(4)函数在区间I上递增(减)的充要条件是:恒成立( 不恒为0).
(5)函数(非常量函数)在区间I上不单调等价于在区间I上有极值,则可等价转化为方程在区间I上有实根且为非二重根。(若为二次函数且I=R,则有)。
(6) 在区间I上无极值等价于在区间在上是单调函数,进而得到或在I上恒成立
(7)若,恒成立,则; 若,恒成立,则
(8)若,使得,则;若,使得,则.
(9)设与的定义域的交集为D,若D 恒成立,
则有.
(10)若对、 ,恒成立,则.
若对,,使得,则.
若对,,使得,则.
(11)已知在区间上的值域为A,,在区间上值域为B,
若对,,使得=成立,则。
(12)若三次函数f(x)有三个零点,则方程有两个不等实根,且极大值大于0,极小值小于0.
(13)证题中常用的不等式:
① ②1 xx
1
x
x
?
③ ④
⑤ ⑥
3. 题型归纳
①HYPERLINK \l 导数单调性、极值、最值的直接应用 导数切线、定义、单调性、极值、最值、的直接应用
例7(构造函数,最值定位)设函数(其中).
(Ⅰ) 当时,求函数的单调区间;
(Ⅱ) 当时,求函数在上的最大值.
例8(分类讨论,区间划分)已知函数,为函数的导函数.
(1)设函数f(x)的图象与x轴交点为A,曲线y=f(x)在A点处的切线方程是,求的值;
(2)若函数,求函数的单调区间.
例9(切线)设函数.
(1)当时,求函数在区间上的最小值;
(2)当时,曲线在点处的切线为,与轴交于点求证:.
例10(极值比较)已知函数其中
⑴当时,求曲线处的切线的斜率;
⑵当时,求函数的单调区间与极值.
例11(零点存在性定理应用)已知函数
⑴若函数φ (x) = f (x)-,求函数φ (x)的单调区间;
⑵设直线l为函数f (x)的图象上一点A(x0,f (x0))处的切线,证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.
例12(最值问题,两边分求)已知函数.
⑴当时,讨论的单调性;
⑵设当时,若对任意,存在,使,求实数取值范围.
例13(二阶导转换)已知函数
⑴若,求的极大值;
⑵若在定义域内单调递减,求满足此条件的实数k的取值范围.
例14(综合技巧)设函数
⑴讨论函数的单调性;
⑵若有两个极值点,记过点的直线斜率为,问:是否存在,使得?若存在,求出的值;若不存在,请说明理由.
显示全部