文档详情

2016版《步步高》高考数学大二轮总复习:专题七 概率与统计第2讲.docx

发布:2016-12-15约字共19页下载文档
文本预览下载声明
第2讲 概 率1.(2015·广东改编)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为__________________.2.(2015·课标全国Ⅰ改编)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为________.3.(2015·湖北改编)在区间[0,1]上随机取两个数x,y,记p1为事件“x+y≥”的概率,p2为事件“|x-y|≤”的概率,p3为事件“xy≤”的概率,则p1,p2,p3的大小关系为________.4.(2014·浙江改编)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(1)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(2)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则E(ξ1),E(ξ2)的大小关系是________.1.以填空题的形式考查古典概型、几何概型及相互独立事件的概率;2.二项分布的应用是考查的热点;3.以解答题形式考查离散型随机变量的概率分布,属于中档题目.热点一 古典概型和几何概型1.古典概型的概率P(A)==.2.几何概型的概率P(A)=.例1 (1)(2015·江苏)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.(2)已知P是△ABC所在平面内一点,++2=0,现将一粒黄豆随机撒在△ABC内,则黄豆落在△PBC内的概率是________.思维升华 (1)解答有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数,这常用到计数原理与排列、组合的相关知识.(2)在求基本事件的个数时,要准确理解基本事件的构成,这样才能保证所求事件所包含的基本事件个数的求法与基本事件总数的求法的一致性.(3)当构成试验的结果的区域为长度、面积、体积、弧长、夹角等时,应考虑使用几何概型求解.跟踪演练1 (1)(2014·广东)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.(2)(2015·常州联考)在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程-=1表示离心率大于的双曲线的概率为________.热点二 相互独立事件和独立重复试验1.条件概率在A发生的条件下B发生的概率:P(B|A)=.2.相互独立事件同时发生的概率P(AB)=P(A)P(B).3.独立重复试验、二项分布如果事件A在一次试验中发生的概率是p,那么它在n次独立重复试验中恰好发生k次的概率为Pn(k)=Cpk(1-p)n-k,k=0,1,2,…,n.一般地,在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=Cpkqn-k,其中0p1,p+q=1,k=0,1,2,…,n,称X服从参数为n,p的二项分布,记作X~B(n,p),且E(X)=np,V(X)=np(1-p).例2 某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和系统B在任意时刻发生故障的概率分别为和p.(1)若在任意时刻至少有一个系统不发生故障的概率为,求p的值;(2)求系统A在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率.             思维升华 求相互独立事件和独立重复试验的概率的注意点:(1)求复杂事件的概率,要正确分析复杂事件的构成,分析复杂事件能转化为几个彼此互斥的事件的和事件还是能转化为几个相互独立事件同时发生的积事件,然后用概率公式求解.(2)注意辨别独立重复试验的基本特征:①在每次试验中,试验结果只有发生与不发生两种情况;②在每次试验中,事件发生的概率相同.跟踪演练2 (1)从混有5张假钞的20张一百元钞票中任意抽取2张,将其中一张在验钞机上检验发现是假钞,则这两张都是假钞的概率为________.(2)箱中装有标号为1,2,3,4,5,6且大小相同的6个球.从箱中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖(每人一次),则恰好有3人获奖的概率是________.热点三 离散型随机变量的概率分布1.设离散型随机变量X可能取的值为x1,x2,…,xi,…,xn,X取每一个值xi的概率为P(X=xi)=pi,则称下表:Xx1x2x3…xi…xnPp1p2p3…pi…pn为离散型随机变量X的概率分布.2.E(X)=x1p1+x2p2+…+xipi+…+xnpn为X的均值或数学期望(简
显示全部
相似文档