毕业论文___基于eigenfaces的人脸识别算法实现1.doc
文本预览下载声明
摘要
随着科技的快速发展,视频监控技术在我们生活中有着越来越丰富的应用。在这些视频监控领域迫切需要一种远距离,非配合状态下的快速身份识别,以求能够快速识别所需要的人员信息,提前智能预警。人脸识别无疑是最佳的选择。可以通过人脸检测从视频监控中快速提取人脸,并与人脸数据库对比从而快速识别身份。这项技术可以广泛应用于国防,社会安全,银行电子商务,行政办公,还有家庭安全防务等多领域。
本文按照完整人脸识别流程来分析基于PCA(Principal Component Analysis)的人脸识别算法实现的性能。首先使用常用的人脸图像的获取方法获取人脸图像。本文为了更好的分析基于PCA人脸识别系统的性能选用了ORL人脸数据库。然后对人脸数据库的图像进行了简单的预处理。由于ORL人脸图像质量较好,所以本文中只使用灰度处理。接着使用PCA提取人脸特征,使用奇异值分解定理计算协方差矩阵的特征值和特征向量以及使用最近邻法分类器欧几里得距离来进行人脸判别分类。
关键词:人脸识别 PCA算法 奇异值分解定理 欧几里得距离
ABSTRACT
With the rapid development of technology, video surveillance technology has become increasingly diverse applications in our lives. In these video surveillance urgent need for a long-range, with rapid identification of non-state, in order to be able to quickly identify people the information they need, advance intelligence warning. Face recognition is undoubtedly the best choice. Face detection can quickly extract human faces from video surveillance, and contrast with the face database to quickly identify identity. This technology can be widely used in national defense, social security, bank e-commerce, administrative offices, as well as home security and defense and other areas.
In accordance with the full recognition process to analyze the performance of PCA-based face recognition algorithm. The first to use the method of access to commonly used face images for face images. In order to better analysis is based on the performance of the PCA face recognition system selected ORL face database. Then the image face database for a simple pretreatment. Because ORL face image quality is better, so this article uses only gray scale processing. Then use the PCA for face feature extraction using singular value decomposition theorem to calculate the covariance matrix of the eigenvalues and eigenvectors, and use the Euclidean distance of the nearest neighbor classifier to the classification of human face discrimination.
KEYWORDS: face recognition PCA algorithm SVD Euclidean distance
目录
摘要 2
ABSTRACT 3
1 人脸识别概述 5
1.1
显示全部