文档详情

《基于核化MMC的人脸识别系统论文》-毕业论文.doc

发布:2018-11-10约8.4万字共70页下载文档
文本预览下载声明
李亚龙: 基于核化MMC的人脸识别系统 PAGE \* ROMAN \* MERGEFORMAT II 基于核化MMC的人脸识别系统 摘 要 人脸识别是模式识别研究领域中一个较为热的研究方向。在实际应用中,人脸往往看成高维数据,因此会遇到维数灾难问题,此时需要通过数据降维进行特征提取,即将原始数据对应的高维空间数据映射到低维空间中,并尽可能地保持数据间的判别信息,以利于分类问题。 论文首先对人脸识别进行简单介绍和概述,将众多人脸识别分为几类,基于核化最大间距准则算法(KMMC)采用非线性映射将原始数据由数据空间映射到高维特征空间,然后再在特征空间中进行了相应的线性操作,该特征提取方法消除了核鉴别矢量间的统计相关性,提高了特征提取的有效性,通过在ORL人脸库上进行试验,结果表明提出的特征提取方法在人脸识别中的有效性。 关键词:人脸识别;降维;KMMC Kernel MMC Based Face Recognition Algorithms System Abstract Face recognition is one of the hottest research topics in pattern recognition. In practical applications, the face’s image are high-dimensional, which will encounter ‘the curse of dimensionality’, and in such cases, there is a great need to use dimensionality reduction method to extract features. That is to say, the high dimensional data are mapped into lower dimensional ones, meanwhile the discriminant information are preserved as much as possible, which helps for classification. Firstly, some basics about face recognition are introduced and surveyed. The kernel maximum margin criterion(KMMC) algorithm is non-linear mapping to the original data from the data space is mapped into high dimensional feature space, Then in the feature space corresponding linear operation, the method is powerful in eliminating the statistical correlation between feature vectors and improving efficiency of feature extraction in the high dimensional feature space. The experimental results on Olivetti Research Laboratory(ORL) face database show that the new method of feature extraction method in face recognition is effective. Keywords:Face recognition; Dimension reduction; kernel maximum margin criterion(KMMC) 目 录 TOC \o 1-3 \h \z \u HYPERLINK \l _Toc294691030 引 言 1 HYPERLINK \l _Toc294691031 第1章 绪论 2 HYPERLINK \l _Toc294691032 1.1 人脸识别的研究意义 2 HYPERLINK \l _Toc294691033 1.2 人脸识别的研究现状 2 HYPERLINK \l _Toc294691034 1.3 人脸识别的应用 3 HYPERLINK \l _Toc294691035 1.4 人脸识别的研究内容 3 HYPERLINK \l _Toc294691036 1.5 人脸识别存在的问题 4 HYPERLINK \l _Toc294691037
显示全部
相似文档