基于贝叶斯图卷积神经网络的风场内多风机风速概率预测研究.docx
基于贝叶斯图卷积神经网络的风场内多风机风速概率预测研究
目录
基于贝叶斯图卷积神经网络的风场内多风机风速概率预测研究(1)
内容简述................................................4
1.1研究背景...............................................4
1.2研究目的与意义.........................................5
1.3文献综述...............................................6
1.3.1风场风速预测技术概述.................................7
1.3.2贝叶斯图神经网络研究进展.............................8
1.3.3卷积神经网络在风速预测中的应用......................10
理论基础...............................................11
2.1风场风速预测模型......................................12
2.1.1经典风速预测模型....................................12
2.1.2基于贝叶斯理论的预测模型............................13
2.2图卷积神经网络........................................14
2.2.1图神经网络概述......................................15
2.2.2图卷积神经网络原理..................................15
2.3贝叶斯图卷积神经网络..................................16
2.3.1贝叶斯图神经网络结构................................17
2.3.2贝叶斯图卷积神经网络构建............................18
实验设计...............................................19
3.1数据集描述............................................20
3.2模型参数设置..........................................21
3.3评价指标..............................................22
3.3.1准确性指标..........................................23
3.3.2稳定性指标..........................................23
实验结果与分析.........................................24
4.1模型性能对比..........................................25
4.1.1与传统预测模型的对比................................26
4.1.2与其他深度学习模型的对比............................27
4.2参数敏感性分析........................................28
4.3模型解释性分析........................................29
案例研究...............................................30
5.1案例背景..............................................31
5.2案例数据..............................................32
5.3案例应用..............................................33
5.4案例结果与分析........................................34
结论与展望.............................................35
6.1研究结论..............................................35
6.2研究不足与展望..