改进YOLOv8算法在草莓识别中的应用研究.docx
改进YOLOv8算法在草莓识别中的应用研究
目录
内容综述................................................3
1.1研究背景及意义.........................................3
1.2YOLOv8算法概述.........................................4
1.3草莓识别的重要性.......................................4
1.4国内外研究现状分析.....................................5
相关工作与理论基础......................................6
2.1传统图像识别技术.......................................7
2.1.1阈值处理.............................................8
2.1.2形态学操作...........................................8
2.1.3边缘检测.............................................9
2.2深度学习在图像识别中的应用............................10
2.2.1卷积神经网络(CNN)...................................11
2.2.2循环神经网络(RNN)...................................12
2.2.3长短时记忆网络(LSTM)................................13
2.3YOLOv8算法的基本原理与特点............................14
2.3.1YOLOv8算法概述......................................15
2.3.2YOLOv8算法的特点....................................16
2.3.3YOLOv8算法的优势分析................................17
草莓图像预处理与特征提取...............................17
3.1图像采集与预处理......................................18
3.1.1图像采集设备选择....................................19
3.1.2图像预处理方法......................................20
3.2颜色空间转换..........................................21
3.2.1HSV颜色空间转换.....................................21
3.2.2Lab颜色空间转换.....................................22
3.3特征提取技术..........................................23
3.3.1SIFT特征提取........................................24
3.3.2SURF特征提取........................................25
3.3.3ORB特征提取.........................................26
YOLOv8算法在草莓识别中的关键实现步骤...................27
4.1数据加载与标注........................................28
4.1.1数据集准备..........................................29
4.1.2标注流程设计........................................30
4.2网络结构设计..........................................30
4.2.1网络架构选择........................................31
4.2.2层数与模块配置......................................31
4.3训练与优化策略.......................