文档详情

不同copula比较 D.doc

发布:2016-04-04约1.93千字共9页下载文档
文本预览下载声明
Copula 汇总表 Copula C(u, v; θ) c(u, v; θ) τ ρs θ Gaussian ① (-1,1) t ② ③ (-1,1) Gumbel [1,+() Clayton (0,+() Frank ②[1] [1][2] (-(,+()\{0} AMH [3][4] [-1,1) FGM [-1,1] Joe [1,+() A12 [1,+() A14 [1,+() Plackett (0,+()\{1} 注:①;②,,k = 1,2。 Understanding relationships using Copulas pp.10 Stochastic Frontier Models with Correlated Error Components pp.15 Bayesian copula selection pp.814 On the relationship between Spearman’s rho and Kendall’s tau for pairs of continuous random variables pp.2149 令H为具有边缘分布F、G的联合分布函数,那么存在一个Copula函数C,使得 如果F,G是连续的,则函数C是唯一的。 对数正态分布 Copula类型:Gaussian Copula 、Gumbel Copula、Clayton Copula、Frank Copula Gaussian Copula (Continuous Bivariate Distributions pp36) (求导) 其中,则 Gumbel Copula (Copula 及其在金融分析上的应用,pp22) (UNDERSTANDING RELATIONSHIPS USING COPULAS) Clayton Copula (Copula 及其在金融分析上的应用,pp23) (UNDERSTANDING RELATIONSHIPS USING COPULAS) (Bivariate Distribution Modeling of Tree Diameters and Heights: Dependency Modeling Using Copulas pp6) Frank Copula (Copula 及其在金融分析上的应用,pp.24) (UNDERSTANDING RELATIONSHIPS USING COPULAS) Clayton Copula (Copula 及其在金融分析上的应用,pp23) (UNDERSTANDING RELATIONSHIPS USING COPULAS) Gumbel-Barnett Copula (Continuous Bivariate Distributions,pp.95) AMH Copula (Bivariate Distribution Modeling of Tree Diameters and Heights: Dependency Modeling Using Copulas pp6) 错误 Using copulas to measure association between ordinal measures of health and income pp14 错误 The health-economic applications of copulas:methods in applied econometric research pp48 正确 Bayesian copula selection,pp814 On the relationship between Spearman’s rho and Kendall’s tau for pairs of continuous random variables pp.2149 其中:, Stochastic Frontier Models with Correlated Error Components pp.6 FGM Copula (Bivariate Distribution Modeling of Tree Diameters and Heights: Dependency Modeling Using Copulas pp6)
显示全部
相似文档