文档详情

新北师版整式的乘除导学案.doc

发布:2018-08-28约1.85万字共42页下载文档
文本预览下载声明
PAGE 第一章 整式的乘除 1.1 同底数幂的乘法 一、学习目标 1.经历探索同底数幂乘法运算性质过程,进一步体会幂的意义. 2.了解同底数幂乘法的运算性质,并能解决一些实际问题 二、学习重点:同底数幂的乘法运算法则的推导过程以及相关计算 三、学习难点:对同底数幂的乘法公式的理解和正确应用 四、学习设计 (一)预习准备 预习书p2-4 (二)学习过程 1. 试试看:(1)下面请同学们根据乘方的意义做下面一组题: ①?②=________= ③a3.a4=_____________=a( ) ???????(2)根据上面的规律,请以幂的形式直接写出下列各题的结果: = = = ×= 2. 猜一猜:当m,n为正整数时候, . =.== 即am·an= (m、n都是正整数) 3. 同底数幂的乘法法则:同底数幂相乘           运算形式:(同底、乘法) 运算方法:(底不变、指加法) 当三个或三个以上同底数幂相乘时,也具有这一性质, 用公式表示为 am·an·ap = am+n+p (m、n、p都是正整数) 练习1.??? 下面的计算是否正确? 如果错,请在旁边订正 (1).a3·a4=a12   (2).m·m4=m4 ( 3).a2·b3=ab5 (4).x5+x5=2x10 (5).3c4·2c2=5c6  (6).x2·xn=x2n (7).2m·2n=2m·n (8).b4·b4·b4=3b4 2.填空:(1)x5 ·( )= x 8 (2)a ·( )= a6 (3)x · x3( )= x7 (4)xm ·(  )=x3m (5)x5·x( )=x3·x7=x( ) ·x6=x·x( ) (6)an+1·a( )=a2n+1=a·a( ) 例1.计算 (1)(x+y)3 · (x+y)4    (2) (3)     (4)(m是正整数) 变式训练.计算 (1)      (2) (3).      (4)   (5)(a-b)(b-a)4     (6)   (n是正整数) 拓展.1、填空 (1) 8 = 2x,则 x = (2) 8 × 4 = 2x,则 x = (3) 3×27×9 = 3x,则 x = . 2、 已知am=2,an=3,求的值      3、 4、已知的值。 5、已知的值。 回顾小结 1.同底数幂相乘法则要注重理解“同底、相乘、不变、相加”这八个字. 2.解题时要注意a的指数是1. 3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆. 4.-a2的底数a,不是-a.计算-a2·a2的结果是-(a2·a2)=-a4,而不是(-a)2+2=a4. 5.若底数是多项式时,要把底数看成一个整体进行计算 1.2 幂的乘方与积的乘方(1) 一、学习目标:1.能说出幂的乘方与积的乘方的运算法则. 2.能正确地运用幂的乘方与积的乘方法则进行幂的有关运算. 二、学习重点:会进行幂的乘方的运算。 三、学习难点:幂的乘方法则的总结及运用。 四、学习设计: (一)预习准备 (1)预习书5~6页 (2)回顾: 计算(1)(x+y)2·(x+y)3 (2)x2·x2·x+x4·x (3)(0.75a)3·(a)4 (4)x3·xn-1-xn-2·x4 (二)学习过程: 1、探索练习: (62)4表示_________个___________相乘. a3表示_________个___________相乘. (a2)3表示_________个___________相乘. 在这个练习中,要引学习生观察,推测(62)4与(a2)3的底数、指数。并用乘方的概念解答问题。 (62)4=________×_________×_______×________ =__________(根据an·am=anm) =__________ (33)5=_____×_______×_______×________×_______ =__________(根据an·am=anm) =__________ 6
显示全部
相似文档