文档详情

全国高中数学联赛一、二试试题及答案.doc

发布:2018-09-06约8.04千字共12页下载文档
文本预览下载声明
2007年全国高中数学联合竞赛一试试卷 (考试时间:上午8:00—9:40) 一、选择题(本题满分36分,每小题6分) 1. 如图,在正四棱锥P?ABCD中,∠APC=60°,则二面角A?PB?C的平面角的余弦值为( ) A. B. C. D. 2. 设实数a使得不等式|2x?a|+|3x?2a|≥a2对任意实数x恒成立,则满足条件的a所组成的集合是( ) A. B. C. D. [?3,3] 3. 将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。甲从袋中摸出一个球,其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b。则使不等式a?2b+100成立的事件发生的概率等于( ) A. B. C. D. 4. 设函数f(x)=3sinx+2cosx+1。若实数a、b、c使得af(x)+bf(x?c)=1对任意实数x恒成立,则的值等于( ) A. B. C. ?1 D. 1 5. 设圆O1和圆O2是两个定圆,动圆P与这两个定圆都相切,则圆P的圆心轨迹不可能是( ) 6. 已知A与B是集合{1,2,3,…,100}的两个子集,满足:A与B的元素个数相同,且为A∩B空集。若n∈A时总有2n+2∈B,则集合A∪B的元素个数最多为( ) A. 62 B. 66 C. 68 D. 74 二、填空题(本题满分54分,每小题9分) 7. 在平面直角坐标系内,有四个定点A(?3,0),B(1,?1),C(0,3),D(?1,3)及一个动点P,则|PA|+|PB|+|PC|+|PD|的最小值为__________。 8. 在△ABC和△AEF中,B是EF的中点,AB=EF=1,BC=6, ,若,则与的夹角的余弦值等于________。 9. 已知正方体ABCD?A1B1C1D1的棱长为1,以顶点A为球心,为半径作一个球,则球面与正方体的表面相交所得到的曲线的长等于__________。 10. 已知等差数列{an}的公差d不为0,等比数列{bn}的公比q是小于1的正有理数。若a1=d,b1=d2,且是正整数,则q等于________。 11. 已知函数,则f(x)的最小值为________。 12. 将2个a和2个b共4个字母填在如图所示的16个小方格内,每个小方格内至多填1个字母,若使相同字母既不同行也不同列,则不同的填法共有________种(用数字作答)。 三、解答题(本题满分60分,每小题20分) 13. 设,求证:当正整数n≥2时,an+1an。 14. 已知过点(0,1)的直线l与曲线C:交于两个不同点M和N。求曲线C在点M、N处切线的交点轨迹。 15. 设函数f(x)对所有的实数x都满足f(x+2π)=f(x),求证:存在4个函数fi(x)(i=1,2,3,4)满足:(1)对i=1,2,3,4,fi(x)是偶函数,且对任意的实数x,有fi(x+π)=fi(x);(2)对任意的实数x,有f(x)=f1(x)+f2(x)cosx+f3(x)sinx+f4(x)sin2x。 2007年全国高中数学联合竞赛加试试卷 (考试时间:上午10:00—12:00) 一、(本题满分50分)如图,在锐角△ABC中,ABAC,AD是边BC上的高,P是线段AD内一点。过P作PE⊥AC,垂足为E,做PF⊥AB,垂足为F。O1、O2分别是△BDF、△CDE的外心。求证:O1、O2、E、F四点共圆的充要条件为P是△ABC的垂心。 二、(本题满分50分)如图,在7×8的长方形棋盘的每个小方格的中心点各放一个棋子。如果两个棋子所在的小方格共边或共顶点,那么称这两个棋子相连。现从这56个棋子中取出一些,使得棋盘上剩下的棋子,没有五个在一条直线(横、竖、斜方向)上依次相连。问最少取出多少个棋子才可能满足要求?并说明理由。 三、(本题满分50分)设集合P={1,2,3,4,5},对任意k∈P和正整数m,记f(m,k)=,其中[a]表示不大于a的最大整数。求证:对任意正整数n,存在k∈P和正整数m,使得f(m,k)=n。 2007年全国高中数学联合竞赛一试试题参考答案 一、选择题(本题满分36分,每小题6分) 1. 如图,在正四棱锥P?ABCD中,∠APC=60°,则二面角A?PB?C的平面角的余弦值为( B ) A. B. C. D. 解:如图,在侧面PAB内,作AM⊥PB,垂足为M。连结CM、AC,则∠AMC为二面角A?PB?C的平面角。不妨设AB=2,则,斜高为,故,由此得。在△AMC中,由余弦定理得。 2. 设实数a使得不等式|2x?a|+|3x?2a|≥a2对任意实数x恒成立,则满足条件的a所组成的集合是( A ) A. B. C. D.
显示全部
相似文档