文档详情

《列联表与独立性检验》教学分析 (1).doc

发布:2024-10-16约6.74千字共11页下载文档
文本预览下载声明

高中数学精选资源

PAGE3/NUMPAGES3

《列联表与独立性检验》教学分析

一、本节知识结构框图

二、重点、难点

重点:列联表,独立性检验的思想和方法.

难点:统计量的导出和意义,独立性检验的思想和方法.

三、教科书编写意图及教学建议

统计最基本的思想是用样本推断总体,而估计和假设检验是两种基本而重要的推断方法.在前面的学习中,主要学习了统计估计的推断方法,例如,用样本数据的均值和方差分别估计总体的均值和方差;用样本相关系数估计两个数值变量的相关系数,从而推断这两个变量线性关系的密切程度;利用最小二乘思想估计一元线性回归模型中的参数等,本节结合具体实例,根据频率稳定到概率的原理及小概率原理,检验两个取值于的分类变量的独立性,了解独立性检验的思想方法,进一步提升学生的数据分析素养.

本节内容对学生来说难度较大,涉及的基础知识有古典概型、条件概率、频率稳定到概率的原理及分类变量独立性的概念,涉及的统计思想方法主要是假设检验的思想方法.教科书结合丰富的实例,通过问题引导,采取了由易到难、逐步深入的处理方式,使学生了解独立性检验的基本思想.

在本节教学中,应通过具体案例渗透独立性检验的基本思想和方法,使学生了解统计推断可能犯错误的特点,避免单纯地记忆独立性检验的基本步骤和机械地套用公式解决问题.应注重培养学生联系实际的意识,提高学生解决实际问题的能力.

教科书注重信息技术与相关内容的有机融合,强调使用计算器、计算机等工具探索和解决问题.例如,在画等高堆积条形图时,借助信息技术作图,不但作出的图形准确美观,而且省时省力.面对复杂的计算,教学中应使用统计软件,解决计算量大的问题,使学生从烦琐的计算中解脱出来,把更多的精力放在对于独立性检验的基本思想的理解上.

8.3.1分类变量与列联表

教科书首先设置问题情境,对某中学全体学生分性别就体育锻炼的经常性进行普查,全校523名女生中有331人经常锻炼,601名男生中有473人经常锻炼,据此判断该中学学生不同性别在体育锻炼的经常性方面是否有差异.

由于是普查数据,而且仅对这所学校进行判断,因此只需分别计算出女生经常参加体的比率和男生经常参加体育锻炼的比率,并比较这两个值是否相等.如果不相等,就认为不同性别在体育锻炼的经常性方面有差异,否则就认为没有差异.实际计算的结果显示经常参加体育锻炼的比率男生比女生高15.4个百分点.因此可判断该校的女生和男生在体育锻炼的经常性方面有差异,而且男生更经常锻炼.

这个问题还可以从概率的角度进行解答.从女生和男生中各随机选取一名学生,分别计算两个群体中抽到经常参加体育锻炼学生的概率,并比较两个概率是否相等.如果不相等,就认为不同性别在体育锻炼的经常性方面有差异,否则就认为没有差异.若令

则问题可以转化为比较条件概率和是否相等.

如果数据是采用抽样调查得到的,怎样判断两个条件概率是否相等,从而推断两个分类变量是否存在关联性呢?

接着教科书设置了例1,根据随机样本数据,推断两所学校学生数学成绩的优秀率是否有差异.根据频率稳定于概率的原理,直观上看,如果两校学生数学成绩优秀的频率差异较大,则可推断对应的两个条件概率不等,从而认为两校学生的数学成绩优秀率存在差异.基于所给的数据,计算得到甲校学生数学成绩优秀的频率为0.2326;乙校学生数学成绩优秀的频率为0.1556.因为两个频率存在明显差异,所以可以认为两校学生的数学成绩优秀率存在差异,并且甲校学生的数学成绩优秀率高于乙校.

但是频率具有随机性,频率与概率之间存在误差,因此根据频率进行推断有可能犯错误.对此教科书设置了一个思考栏目,让学生思考上面推断的结论是否可能犯错误,进而深刻理解抽样数据的随机性特点,实际上也指出,例1给出的解答方法也是有缺陷的,为后面引出独立性检验方法作了铺垫.

1.数值变量与分类变量

数值变量的取值为实数,其大小和运算都具有实际含义.例如年龄、身高、体重、学习成绩等都是数值变量,张明的身高是180cm,李立的身高是175cm,说明张明比李立高5cm.常见数值变量的数字特征(如均值、方差、百分位数等)均有明确的含义.

分类变量的取值表示个体所属类别,例如性别变量是分类变量,取男、女两个值;同样,数学考试等级是分类变量,取优、良、中等、及格、不及格五个值;等等.有时也可以把分类变量的不同取值用实数表示,但这些数值仅作为编号使用,通常没有大小关系和运算意义,例如,用0表示“男”,1表示“女”,性别变量这个分类变量的取值就变成0和1,但这里的0和1仅作为分类用,没有其他含义,比较0和1的大小没有意义,通常计算其均值和方差也没有意义.

2.列联表

显示全部
相似文档