文档详情

数据挖掘的理论方法及其在教学管理系统中的应用毕设论文.doc

发布:2017-03-31约3.42万字共48页下载文档
文本预览下载声明
数据挖掘的理论方法及其在教学管理系统中的应用 计算机科学与技术 李政杰 指导老师:符开耀 摘要:数据挖掘是指从数据中发现隐含在其中知识的一种实践过程,作为一种技术它已应用在很多领域,而在教育系统领域中它还很陌生。关联规则挖掘是数据挖掘领域中一个重要的研究方向,它研究的是事务数据库中各项之间某种关联关系。本文从数据挖掘的理论与方法研究入手,主要探讨了关联规则挖掘及其方法,并且在经典的Apriori算法的基础上提出了一种改进算法,接着结合Microsoft SQL S 2000平台进行数据库编程实现了上述两种关联规则挖掘算法在计算机学院教学管理系统中的应用。最后,对所挖掘出的规则进行分析,我们主要挖掘出了以下三类规则:第一类规则,验证了我院目前专业课程是比较科学、合理的。第二类规则,发现了一些目前没被发现或没有被引起重视的规则。第三类规则,符合事实但尚不能被教育理论解释的规则。关键词:数据挖掘;关联规则;Apriori算法;教学管理系统 The Theory and the Application of Data Mining Technology In Educational Management System Computer science and technology Li Zhengjie Tutor:Fu Kaiyao Abstract: Data Mining is a process by which we can discover knowledge from much data,as a technology,it has been applied in many areas,but strage in educational area. Data Mining is a practical process means to mine the concealed knowledge in data, as a technology it has applied to many different fields, however, in the education system, it is still ufamiliar to people. Association Rule mining is an important branch of the Data Mining,which research the association relation of all items in the Database. The article proceeded with data mining theories and measures, mainly discussed association Rule mining and its technics, brings forward an improved arithmetic based on the classsical Apriori one, using the Microsoft SQL Server 2000 database programme, it realized the application of the above mentioned relation regulation mining arithmetic in our college. At last, we analyzed the mined rules and summarized the following three rules: first, validate that the professional courses of my college is scientific and reasonable; second, discover some rules that havent been mined or well regarded; third, somes rules that are accord with the truth but can not be explained by current education therory. Keywords: Data Mining Ascorria; Association Rule; Apriori algorithm; Educational management system 目 录 摘 要 Abstract Ⅱ 前 言 1 1关于数据挖掘 2 1.1 数据挖掘技术的历史由来 2 1.2 数据挖掘的定义 2 1.2.1 技术上的定义及含义 2 1.
显示全部
相似文档