发展基于改进YOLOv8的PCB表面缺陷检测算法.docx
发展基于改进YOLOv8的PCB表面缺陷检测算法
目录
发展基于改进YOLOv8的PCB表面缺陷检测算法(1)...............4
内容概览................................................4
1.1研究背景...............................................4
1.2研究意义...............................................5
1.3文档概述...............................................6
PCB表面缺陷检测技术概述.................................7
2.1PCB表面缺陷类型........................................7
2.2传统检测方法的局限性...................................8
2.3基于深度学习的缺陷检测方法.............................9
YOLOv8算法简介.........................................10
3.1YOLOv8算法概述........................................11
3.2YOLOv8算法优势........................................12
3.3YOLOv8算法原理........................................12
改进YOLOv8算法的设计...................................13
4.1数据预处理............................................14
4.1.1图像增强............................................14
4.1.2数据集划分..........................................15
4.2网络结构优化..........................................16
4.2.1网络模块设计........................................17
4.2.2损失函数调整........................................17
4.3模型训练策略..........................................18
4.3.1优化器选择..........................................18
4.3.2超参数调整..........................................19
改进YOLOv8算法在PCB表面缺陷检测中的应用................20
5.1算法实现..............................................21
5.1.1模型搭建............................................22
5.1.2模型训练与验证......................................22
5.2实验结果与分析........................................23
5.2.1性能评估指标........................................24
5.2.2实验结果展示........................................24
5.2.3与其他算法比较......................................25
算法优化与改进.........................................26
6.1模型优化..............................................26
6.1.1模型轻量化..........................................27
6.1.2模型鲁棒性提升......................................28
6.2实时性提升............................................28
6.2.1硬件加速...........