文档详情

2018届高考数学二轮复习 第3部分 坐标系与参数方程考点整合 选修4-4 文.doc

发布:2017-05-17约2.21千字共4页下载文档
文本预览下载声明
选修4-4 坐标系与参数方程考点整合1.直角坐标与极坐标的互化 把直角坐标系的原点作为极点,x轴正半轴作为极轴,且在两坐标系中取相同的长度单位.设M是平面内的任意一点,它的直角坐标、极坐标分别为(x,y)和(ρ,θ), 则 2.直线的极坐标方程 若直线过点M(ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α). 几个特殊位置的直线的极坐标方程: (1)直线过极点:θ=α; (2)直线过点M(a,0)(a>0)且垂直于极轴:ρcos θ=a; (3)直线过M且平行于极轴:ρsin θ=b. 3.圆的极坐标方程 若圆心为M(ρ0,θ0),半径为r的圆方程为: ρ2-2ρ0ρcos(θ-θ0)+ρ-r2=0. 几个特殊位置的圆的极坐标方程 (1)当圆心位于极点,半径为r:ρ=r; (2)当圆心位于M(r,0),半径为r:ρ=2rcos θ; (3)当圆心位于M,半径为r:ρ=2rsin θ. 4.直线的参数方程 经过点P0(x0,y0),倾斜角为α的直线的参数方程为(t为参数). 设P是直线上的任一点,则t表示有向线段的数量. 5.圆的参数方程 圆心在点M(x0,y0),半径为r的圆的参数方程为(θ为参数,0≤θ<2π). 6.圆锥曲线的参数方程 (1)椭圆+=1(a>b>0)的参数方程为(θ为参数). (2)双曲线-=1(a>0,b>0)的参数方程为(θ为参数). (3)抛物线y2=2px(p>0)的参数方程为(t为参数). 类型一 曲线的极坐标方程 [例1] (2016·高考全国甲卷)在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25. (1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程; (2)直线l的参数方程是(t为参数),l与C交于A,B两点,|AB|=,求l的斜率. 解:(1)由x=ρcos θ,y=ρsin θ可得圆C的极坐标方程为ρ2+12ρcos θ+11=0. (2)由直线l的参数方程(t为参数),消去参数得y=x·tan α. 设直线l的斜率为k,则直线l的方程为kx-y=0. 由圆C的方程(x+6)2+y2=25知,圆心坐标为(-6,0),半径为5. 又|AB|=,由垂径定理及点到直线的距离公式得=,即=, 整理得k2=,解得k=±, 即l的斜率为±. [解后反思] 由圆的直角坐标方程化为极坐标方程,其方法就是把x=ρcos θ,y=ρsin θ代入圆的方程,根据三角函数公式整理. 1.(2016·高考全国乙卷)在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cos θ. (1)说明C1是哪一种曲线,并将C1的方程化为极坐标方程; (2)直线C3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C1与C2的公共点都在C3上,求a. 解:(1)消去参数t得到C1的普通方程为x2+(y-1)2=a2, 则C1是以(0,1)为圆心,a为半径的圆. 将x=ρcos θ,y=ρsin θ代入C1的普通方程中,得到C1的极坐标方程为ρ2-2ρsin θ+1-a2=0. (2)曲线C1,C2的公共点的极坐标满足方程组 若ρ≠0,由方程组得16cos2θ-8sin θcos θ+1-a2=0, 由已知tan θ=2,可得16cos2θ-8sin θcos θ=0, 从而1-a2=0,解得a=-1(舍去)或a=1. 当a=1时,极点也为C1,C2的公共点,且在C3上.a=1. 类型二 参数方程 [例2] (2016·高考全国丙卷)在直角坐标系xOy中,曲线C1的参数方程为(α为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin=2. (1)写出C1的普通方程和C2的直角坐标方程; (2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标. 解:(1)C1的普通方程为+y2=1.C2的直角坐标方程为x+y-4=0. (2)由题意,可设点P的直角坐标为(cos α,sin α).因为C2是直线,所以|PQ|的最小值即为P到C2的距离d(α)的最小值, d(α)==,当且仅当α=2kπ+(kZ)时,d(α)取得最小值,最小值为,此时P的直角坐标为. [解后反思] 由参数方程化为普通方程就是“消去参数”,可根据三角公式消参,也可利用代入法消参. 2.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α<π.在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sin θ,C3:ρ=2cos θ. (1)求C2与C3交点的直角坐标; (2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值
显示全部
相似文档