基于数据关联的多目标跟踪算法研究.pdf
ABSTRACT
Multi-objecttracking,asanimportantresearchsubfieldofcomputervision,aimsto
maintaintheidentityandtrajectoryofeachtargetinacontinuousimagesequence,soit
iswidelyusedinreallife,suchasunmanneddriving,intelligentsecurity,industrial
intelligence,etc.Nowadays,multi-objecttrackingismostlytrackbydetection,which
mainlyreliesontheobjectdetectortoprovidethepositioninformationoftheinterested
targetinthecurrentframe,andmatchesthetrackingtargetandthedetectiontarget
throughdataassociation,soastocompletethemulti-objecttracking.
Thisthesisstudiesthemotionmoduleandappearancemoduleindataassociation-
basedmulti-objecttracking.ByproposingaUnitedSiameseNetwork,themotionmodule
andappearancemoduleinthedataassociationareregardedasawholetoestablishthe
framework.Then,theobjectdetectionmodule,motionmoduleandappearancemodule
arefurtherintegratedintoanend-to-endnetwork,andamulti-objecttrackingalgorithm
whichintegratingdetectionandtrackingisconstructed.Atthesametime,fortheairport
scenesurveillance,anintegrateddetectionandtrackingalgorithmbasedonADS-Bis
designedbycombiningthisalgorithmwiththeADS-Bsignalontheaircraft.Finally,the
experimentsshowthattheseworkshaveachievedgreatimprovementcomparedwith
otheralgorithms.Thespecificcontentandinnovationoftheworkareasfollows:
1.Thisthesisfirstintroducesthebasicsofdeeplearningandseveralclassicdeep
learningnetworksandexcellentobjectdetectionalgorithmsinrecentyears.Atthesame
time,someclassicmethodsofmotionmodule,appearancemoduleandassociation
algorithminmulti-objecttrackingalgorithminrecentyearsaresummarizedandthe
problemsexistingbetweenthesemodules