文档详情

徐州经济技术开发区高级中学苏教版高中数学学案抛物线的标准方程.docx

发布:2025-05-28约1.08千字共5页下载文档
文本预览下载声明

学必求其心得,业必贵于专精

学必求其心得,业必贵于专精

学必求其心得,业必贵于专精

年级

高二

学科

数学

选修1-1/2-1

总课题

2.4抛物线

总课时

第课时

分课题

2.4。1抛物线的标准方程

分课时

第1课时

主备人

梁靓

审核人

朱兵

上课时间

预习导读

(文)阅读选修1-1第47-—48页,然后做教学案,完成前三项.

(理)阅读选修2-1第50——51页,然后做教学案,完成前三项.

学习目标

1.能根据抛物线的定义建立抛物线的标准方程;

2.会根据抛物线的标准方程写出其焦点坐标与准线方程;

3.会求抛物线的标准方程。

一、预习检查

1.完成下表:

标准方程

图形

焦点坐标

准线方程

开口方向

2.求抛物线的焦点坐标和准线方程.

3.求经过点的抛物线的标准方程.

二、问题探究

探究1:回顾抛物线的定义,依据定义,如何建立抛物线的标准方程?

探究2:方程是抛物线的标准方程吗?试将其与抛物线的标准方程辨析比较.

例1.已知抛物线的顶点在原点,对称轴为坐标轴,焦点在直线上,求抛物线的方程.

例2.已知抛物线的焦点在轴上,点是抛物线上的一点,到焦点的距离是5,求的值及抛物线的标准方程,准线方程。

例3.抛物线的顶点在原点,对称轴为轴,它与圆相交,公共弦的长为。求该抛物线的方程,并写出其焦点坐标与准线方程.

三、思维训练

1.在平面直角坐标系中,若抛物线上的点到该抛物线的焦点的距离为6,则点的横坐标为.

2.抛物线的焦点到其准线的距离是.

3.设为抛物线的焦点,为该抛物线上三点,若,则=.

4.若抛物线上两点到焦点的距离和为5,则线段的中点到轴的距离是.

5.(理)已知抛物线,有一个内接直角三角形,直角顶点在原点,斜边长为,一直角边所在直线方程是,求此抛物线的方程。

四、课后巩固

1.抛物线的准线方程是.

2.抛物线上一点到焦点的距离为,则点到轴的距离为.

3.已知抛物线,焦点到准线的距离为,则.

4.经过点的抛物线的标准方程为.

5.顶点在原点,以双曲线的焦点为焦点的抛物线方程是.

6.抛物线的顶点在原点,以轴为对称轴,过焦点且倾斜角为的直线被抛物线所截得的弦长为8,求抛物线的方程.

7.若抛物线上有一点,其横坐标为,它到焦点的距离为10,求抛物线方程和点的坐标.

总结与反思:

总结与反思:

总结与反思:

总结与反思:

显示全部
相似文档