文档详情

2025届四川省仁寿县高三下学期数学仿真模拟试题(三模)含解析.docx

发布:2025-05-21约4.15千字共14页下载文档
文本预览下载声明

2025届四川省仁寿县高三下学期数学仿真模拟试题(三模)

一、单选题(本大题共8小题)

1.若复数满足,则的虚部与实部之差为(????)

A. B. C. D.

2.已知焦点在y轴上的椭圆的离心率为,焦距为,则该椭圆的方程为()

A. B.

C. D.

3.已知向量,则向量在上的投影向量为(????)

A. B. C. D.

4.已知双曲线的焦距为,则的渐近线方程为()

A. B. C. D.

5.已知圆,若圆刚好被直线平分,则的最小值为()

A. B. C. D.

6.某公司的两名同事计划今年国庆节期间从大理、丽江、洱海、玉龙雪山、蓝月谷这个著名旅游景点中随机选择一个游玩.若在两人中至少有一人选择大理的条件下,求两人选择的景点不同的概率为(????)

A. B. C. D.

7.已知,,则(????)

A. B. C. D.

8.已知函数,若恒成立,则实数的取值范围是(????)

A. B. C. D.

二、多选题(本大题共3小题)

9.下列说法正确的是()

A.若数列前项和满足,则

B.在等差数列中,满足,则其前项和中最大

C.在等差数列中,满足,则数列的前9项和为定值

D.若等差数列中,,则使的最大的为15

10.已知圆,直线,则(????)

A.当时,圆C上恰有两个点到直线的距离等于1

B.圆C与圆恰有三条公切线

C.直线恒过定点

D.直线与圆C有两个交点

11.已知函数是上的奇函数,对于任意,都有成立,当时,,给出下列结论,其中正确的是()

A.

B.点是函数的图象的一个对称中心

C.函数在上单调递增

D.函数在上有个零点

三、填空题(本大题共3小题)

12.已知抛物线方程为,则抛物线的准线方程为.

13.如图,在梯形中,,且,若是线段上的动点,且,则的取值范围为.

??

14.已知,函数

(1)若在上单调递增,则的取值范围为;

(2)若对于任意实数,方程有且只有一个实数根,且,函数的图象与函数的图象有三个不同的交点,则的取值范围为.

四、解答题(本大题共5小题)

15.为了引导学生阅读世界经典文学名著,某学校举办“名著读书日”活动,每个月选择一天为“名著读书日”,并给出一些推荐书目.为了了解此活动促进学生阅读文学名著的情况,该校在此活动持续进行了一年之后,随机抽取了校内100名学生,调查他们在开始举办读书活动前后的一年时间内的名著阅读数量,所得数据如下表:

不少于5本

少于5本

合计

活动前

35

65

100

活动后

60

40

100

合计

95

105

200

(1)依据小概率值的独立性检验,分析举办该读书活动对学生阅读文学名著是否有促进作用;

(2)已知某学生计划在接下来的一年内阅读6本文学名著,其中4本国外名著,2本国内名著,现从6本名著中随机抽取3本在上半年读完,求上半年读完的国内名著本数的分布列及数学期望.

附:,其中.

临界值表:

0.1

0.05

0.01

0.005

0.001

2.706

3.841

6.635

7.879

10.828

16.在中,角所对的边分别为,设向量,,,.

(1)求函数的最大值;

(2)若,,,求的面积.

17.如图,在圆锥中,为圆锥底面的直径,为底面圆周上一点,点在线段上,,.

??

(1)证明:平面;

(2)若圆锥的侧面积为,求二面角的正弦值.

18.已知数列满足,点在直线上.

(1)设,证明为等比数列;

(2)求数列的前项和;

(3)设的前项和为,证明.

19.已知函数,其中.

(1)证明:当时,;

(2)若时,有极小值,求实数的取值范围;

(3)对任意的恒成立,求实数的取值范围.

答案

1.【正确答案】B

【详解】因为,

所以,复数的虚部为,实部为,

所以,的虚部与实部之差为.

故选B.

2.【正确答案】D

【详解】设椭圆的标准方程为,焦距为,

由得,由得,

故,

所以该椭圆的方程为.

故选D.

3.【正确答案】D

【详解】由,得,由,

得,则,

因此,在上的投影向量为.

故选D.

4.【正确答案】A

【详解】由双曲线的焦距为,得,解得,

所以曲线的渐近线方程为.

故选A.

5.【正确答案】A

【详解】圆心为,且圆刚好被直线平分,

则圆心在直线上,所以,,

所以,,

当且仅当时,即当时,等号成立,

因此,的最小值为.

故选A.

6.【正确答案】B

【分析】设“两人中至少有一人选择大理”为事件,“两人选择的景点不同”为事件,求,,结合条件概率公式求解结论.

【详解】设“两人中至少有一人选择大理”为事件,“两人选择的景点不同”为事件,则,,

故选B.

7.【正确答案】D

【详解】,

,所以,

所以,

所以.

故选D.

8

显示全部
相似文档