广东省佛山市石门中学2024-2025学年高三下学期3月第二次月考数学试题含解析.doc
广东省佛山市石门中学2024-2025学年高三下学期3月第二次月考数学试题
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设等比数列的前项和为,若,则的值为()
A. B. C. D.
2.定义在上的函数满足,则()
A.-1 B.0 C.1 D.2
3.正三棱柱中,,是的中点,则异面直线与所成的角为()
A. B. C. D.
4.过直线上一点作圆的两条切线,,,为切点,当直线,关于直线对称时,()
A. B. C. D.
5.若复数,则()
A. B. C. D.20
6.年部分省市将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为
A. B.
C. D.
7.已知直线是曲线的切线,则()
A.或1 B.或2 C.或 D.或1
8.如图,平面与平面相交于,,,点,点,则下列叙述错误的是()
A.直线与异面
B.过只有唯一平面与平行
C.过点只能作唯一平面与垂直
D.过一定能作一平面与垂直
9.已知函数的图象在点处的切线方程是,则()
A.2 B.3 C.-2 D.-3
10.设双曲线的一条渐近线为,且一个焦点与抛物线的焦点相同,则此双曲线的方程为()
A. B. C. D.
11.函数在区间上的大致图象如图所示,则可能是()
A.
B.
C.
D.
12.已知α,β表示两个不同的平面,l为α内的一条直线,则“α∥β是“l∥β”的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
二、填空题:本题共4小题,每小题5分,共20分。
13.用数字、、、、、组成无重复数字的位自然数,其中相邻两个数字奇偶性不同的有_____个.
14.某高中共有1800人,其中高一、高二、高三年级的人数依次成等差数列,现用分层抽样的方法从中抽取60人,那么高二年级被抽取的人数为________.
15.若向量满足,则实数的取值范围是____________.
16.点是曲线()图象上的一个定点,过点的切线方程为,则实数k的值为______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)设数列是等差数列,其前项和为,且,.
(1)求数列的通项公式;
(2)证明:.
18.(12分)已知公差不为零的等差数列的前n项和为,,是与的等比中项.
(1)求;
(2)设数列满足,,求数列的通项公式.
19.(12分)已知函数,.
(1)当时,求函数的值域;
(2),,求实数的取值范围.
20.(12分)在平面直角坐标系中,曲线:(为参数,),曲线:(为参数).若曲线和相切.
(1)在以为极点,轴非负半轴为极轴的极坐标系中,求曲线的普通方程;
(2)若点,为曲线上两动点,且满足,求面积的最大值.
21.(12分)设抛物线的焦点为,准线为,为抛物线过焦点的弦,已知以为直径的圆与相切于点.
(1)求的值及圆的方程;
(2)设为上任意一点,过点作的切线,切点为,证明:.
22.(10分)某调查机构为了了解某产品年产量x(吨)对价格y(千克/吨)和利润z的影响,对近五年该产品的年产量和价格统计如下表:
x
1
2
3
4
5
y
17.0
16.5
15.5
13.8
12.2
(1)求y关于x的线性回归方程;
(2)若每吨该产品的成本为12千元,假设该产品可全部卖出,预测当年产量为多少时,年利润w取到最大值?
参考公式:
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.C
【解析】
求得等比数列的公比,然后利用等比数列的求和公式可求得的值.
【详解】
设等比数列的公比为,,,,
因此,.
故选:C.
本题考查等比数列求和公式的应用,解答的关键就是求出等比数列的公比,考查计算能力,属于基础题.
2.C
【解析】
推导出,由此能求出的值.
【详解】
∵定义在上的函数满足,
∴,故选C.
本题主要考查函数值的求法,解题时要认真审题,注意函数性质的合理运用,属于中档题.
3.C
【解析】
取中点,连接,,根据正棱柱的结构性质,得出//,则即为异面直线与所成角,求出,即可得出结果.
【详解】
解:如图,取中点,连接,,
由于正三棱柱,则底面,
而