图像传感器推动嵌入式视觉技术的发展.docx
新的成像应用正在蓬勃发展,从工业4.0中的协作机器人,到无人机消防或用于农业,再到生物特征面部识别,以及家庭中的护理点手持医疗设备。这些新应用场景出现的一个关键因素是,嵌入式视觉比以往任何时候都更普及。嵌入式视觉不是一个新概念,它只是定义了一个系统,其中包括一个视觉设置,该设置在没有外部计算机的情况下控制和处理数据。它已广泛应用于工业质量控制,为人熟悉的例子比如“智能相机”。
近年源于消费类市场经济适用硬件器件的开发,相较于以往使用电脑的方案,这些器件大幅度减小了材料清单(BOM)成本和产品体积。举个例子,小型系统集成商或OEM现在能够小批量采购诸如?NVIDIAJetson的单板机或模块系统;而较大型的OEM则可以直接获得如高通骁龙(QualcommSnapdragon)的图像信号处理器。?在软件级方面,市面软件库能够加快专用视觉系统的开发速度,减小配置难度,即便是针对小批量生产。
第二个推动嵌入式视觉系统发展的变化是机器学习的出现,它使实验室中的神经网络能够接受培训,然后直接上传到处理器中,以便它能够自动识别特征,并实时做出决定。
能够提供适用于嵌入式视觉系统的解决方案,对于面向这些高增长应用的成像企业来说至关重要。图像传感器由于能够直接影响嵌入式视觉系统的效能和设计,因而在大规模引进中有重要角色,而它的主要推动因素可概括为:更小尺寸、重量、功耗和成本,英语简称为“SWaP-C”(decreasingSize,Weight,PowerandCost).
01
降低成本至关重要
嵌入式视觉新应用的加速推动器是满足市场需求的价格,而视觉系统成本正是实现这要求的一个主要制肘。
节省光学成本
减小视觉模块成本的第一个途径是缩小产品尺寸,原因有两个:首先是图像传感器的像素尺寸愈小,晶圆便可以制造更多的芯片;另一方面传感器可以使用更小更低成本的光学组件,二者都能够降低固有成本。例如Teledynee2v的Emerald5M传感器把像素尺寸减小至2.8μm,让S口(M12)镜头能够用于五百万像素全局快门传感器上,带来直接的成本节省──入门级的M12镜头的价格约为10美元,而较大尺寸的C口或F口镜头成本是其10到20倍。所以减小尺寸是降低嵌入式视觉系统成本的有效方法。
对于图像传感器制造商来说,这种降低的光学成本对设计有另一个?影响,因为一般来说,光学成本越低,传感器的入射角越不理想。因此,低成本光学需要在像素上方设计特定的位移微透镜,这样它就可以补偿扭曲,并聚焦来自广角的光线。
高成本效益的传感器接口
除了光学优化,传感器接口的选择也间接影响视觉系统的成本。MIPICSI-2接口是实现节约成本的合适选择(它最初是由MIPI联盟为移动行业开发的)。它已被大多数ISP广泛采用,并已开始在工业市场采用,因为它提供了一个从NXP、NVIDIA、高通公?司、Rockchip、Intel以及其他公司的低成本的片上系统(SOC)或?模块上系统(SOM)的轻便集成。设计一种具有MIPICSI-2传感器接口的CMOS图像传感器,无需任何转接桥,直接将图像传感器的数据传输到嵌入式系统的主机SOC或SOM,从而节省了成本和PCB空间,当然,在基于多传感器的嵌入式系统(如360度全景系统)中,这一优势更为突出。
不过这些好处受到一些限制。目前在机器视觉行业中广泛使用的MIPICSI-2D-PHY标准依赖于高成本效益的扁平排线,其缺点是连接距离限制为20厘米,这在传感器离主处理器较远的远程云台设置中可能不是最佳选择,在交通监控或环视应用中经常是这样的。延长连接距离的解决方案之一,是在MIPI传感器板和主机处理器之间放置额外的中继器板,但这是以牺牲小型化为代价的。还有其他解决方案,不是来自移动行业,而是来自汽车行业:即所谓的FPD-LinkIII和MIPICSI-2A-PHY标准支持同轴或差分对线,允许连接距离达15米。
降低开发成本
在投资新产品时,不断上升的开发成本往往是一个挑战;它可能会在一次性投入成本(NRE)上花费数百万美元,并给上市时间带来压力。对于嵌入式视觉,这种压力变得更大,因为模块化(即产品能否切换使用多种图像传感器)是集成商的重要考虑。幸运的是,一次性开发成本是可以控制的,具体方法是在传感器之间提供一定程度的交叉兼容性,例如,通过定义合并/共享相同的像素结构以获得稳定的光电性能,通过相同的光学中心来共享单个前端结构,以及兼容的PCB组件?(方法是尺寸兼容或针脚兼容),从而加快评估、集成和供应链,如图1所示。
图1:图像传感器平台可经设计提供针脚兼容(图左)
或尺寸兼容(图?右)以实现专有PCB布局设计
如今,随着所谓的模块和板级解决方案的广泛发布,嵌入式视觉系统的开发速度更快,价格也更实惠。这些一站式产