北京理工大学附属中学2024-2025学年高三下学期2月月考数学试题含解析.doc
北京理工大学附属中学2024-2025学年高三下学期2月月考数学试题
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,则=()
A. B. C. D.
2.已知函数为奇函数,则()
A. B.1 C.2 D.3
3.已知,则的大小关系是()
A. B. C. D.
4.已知集合,,则()
A. B.
C. D.
5.已知命题:任意,都有;命题:,则有.则下列命题为真命题的是()
A. B. C. D.
6.已知变量的几组取值如下表:
1
2
3
4
7
若与线性相关,且,则实数()
A. B. C. D.
7.如果实数满足条件,那么的最大值为()
A. B. C. D.
8.已知函数,将的图象上的所有点的横坐标缩短到原来的,纵坐标保持不变;再把所得图象向上平移个单位长度,得到函数的图象,若,则的值可能为()
A. B. C. D.
9.如图,在平面四边形ABCD中,
若点E为边CD上的动点,则的最小值为()
A. B. C. D.
10.已知复数和复数,则为
A. B. C. D.
11.下列函数中,值域为R且为奇函数的是()
A. B. C. D.
12.若,,则的值为()
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.若变量x,y满足:,且满足,则参数t的取值范围为_______.
14.过且斜率为的直线交抛物线于两点,为的焦点若的面积等于的面积的2倍,则的值为___________.
15.工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是________.
16.已知二项式的展开式中各项的二项式系数和为512,其展开式中第四项的系数__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数.
(Ⅰ)当时,求不等式的解集;
(Ⅱ)若存在满足不等式,求实数的取值范围.
18.(12分)等差数列中,.
(1)求的通项公式;
(2)设,记为数列前项的和,若,求.
19.(12分)设点,分别是椭圆的左、右焦点,为椭圆上任意一点,且的最小值为1.
(1)求椭圆的方程;
(2)如图,动直线与椭圆有且仅有一个公共点,点,是直线上的两点,且,,求四边形面积的最大值.
20.(12分)班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.
(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)
(2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表:
学生序号
1
2
3
4
5
6
7
数学成绩
60
65
70
75
85
87
90
物理成绩
70
77
80
85
90
86
93
①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为,求的分布列和数学期望;
②根据上表数据,求物理成绩关于数学成绩的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?
附:线性回归方程,
其中,.
76
83
812
526
21.(12分)如图,在直角中,,通过以直线为轴顺时针旋转得到().点为斜边上一点.点为线段上一点,且.
(1)证明:平面;
(2)当直线与平面所成的角取最大值时,求二面角的正弦值.
22.(10分)一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端.某种植户对一块地的个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为,且每粒种子是否发芽相互独立.对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种.
(1)当取何值时,有3个坑要补播种的概率最大?最大概率为多少?
(2)当时,用表示要补播种的坑的个数,求的分布列与数学期望.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.D
【解析】
先求出集合A,B,再求集合B的补集,然后求
【详解】
,所以.
故选:D
此题考查的是集合