文档详情

云南省保山市施甸县一中2025届高考诊断性测试数学试题含解析.doc

发布:2025-05-03约6.17千字共19页下载文档
文本预览下载声明

云南省保山市施甸县一中2025届高考诊断性测试数学试题

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,,则()

A. B. C. D.

2.已知双曲线的一条渐近线为,圆与相切于点,若的面积为,则双曲线的离心率为()

A. B. C. D.

3.已知抛物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为

A. B. C. D.

4.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷200个点,己知恰有80个点落在阴影部分据此可估计阴影部分的面积是()

A. B. C.10 D.

5.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“-”当作数字“1”,把阴爻“--”当作数字“0”,则八卦所代表的数表示如下:

卦名

符号

表示的二进制数

表示的十进制数

000

0

001

1

010

2

011

3

依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()

A.18 B.17 C.16 D.15

6.复数的共轭复数对应的点位于()

A.第一象限 B.第二象限 C.第三象限 D.第四象限

7.若集合,,则()

A. B. C. D.

8.已知为锐角,且,则等于()

A. B. C. D.

9.已知正三角形的边长为2,为边的中点,、分别为边、上的动点,并满足,则的取值范围是()

A. B. C. D.

10.已知集合,,则=()

A. B. C. D.

11.函数的一个零点在区间内,则实数a的取值范围是()

A. B. C. D.

12.为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示.劳伦茨曲线为直线时,表示收入完全平等.劳伦茨曲线为折线时,表示收入完全不平等.记区域为不平等区域,表示其面积,为的面积,将称为基尼系数.

对于下列说法:

①越小,则国民分配越公平;

②设劳伦茨曲线对应的函数为,则对,均有;

③若某国家某年的劳伦茨曲线近似为,则;

④若某国家某年的劳伦茨曲线近似为,则.

其中正确的是:

A.①④ B.②③ C.①③④ D.①②④

二、填空题:本题共4小题,每小题5分,共20分。

13.已知函数为上的奇函数,满足.则不等式的解集为________.

14.已知角的终边过点,则______.

15.已知(且)有最小值,且最小值不小于1,则的取值范围为__________.

16.已知无盖的圆柱形桶的容积是立方米,用来做桶底和侧面的材料每平方米的价格分别为30元和20元,那么圆桶造价最低为________元.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)已知中心在原点的椭圆的左焦点为,与轴正半轴交点为,且.

(1)求椭圆的标准方程;

(2)过点作斜率为、的两条直线分别交于异于点的两点、.证明:当时,直线过定点.

18.(12分)在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求曲线的直角坐标方程;

(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值.

19.(12分)某网络商城在年月日开展“庆元旦”活动,当天各店铺销售额破十亿,为了提高各店铺销售的积极性,采用摇号抽奖的方式,抽取了家店铺进行红包奖励.如图是抽取的家店铺元旦当天的销售额(单位:千元)的频率分布直方图.

(1)求抽取的这家店铺,元旦当天销售额的平均值;

(2)估计抽取的家店铺中元旦当天销售额不低于元的有多少家;

(3)为了了解抽取的各店铺的销售方案,销售额在和的店铺中共抽取两家店铺进行销售研究,求抽取的店铺销售额在中的个数的分布列和数学期望.

20.(12分)已知函数.

(1)求函数的单调递增区间;

(2)在△ABC中,角A,B,C所对的边分别是a,b,c,若满足,,,求.

21.(12分)在三角形中,角,,的对边分别为,,,若.

(Ⅰ)求角;

(Ⅱ)若,

显示全部
相似文档