文档详情

云南省文山州广南二中2025届高三下学期数学试题开学考试卷含解析.doc

发布:2025-04-30约7.14千字共21页下载文档
文本预览下载声明

云南省文山州广南二中2025届高三下学期数学试题开学考试卷

考生请注意:

1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合,,则()

A. B.

C. D.

2.已知,满足条件(为常数),若目标函数的最大值为9,则()

A. B. C. D.

3.费马素数是法国大数学家费马命名的,形如的素数(如:)为费马索数,在不超过30的正偶数中随机选取一数,则它能表示为两个不同费马素数的和的概率是()

A. B. C. D.

4.设平面与平面相交于直线,直线在平面内,直线在平面内,且则“”是“”的()

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.即不充分不必要条件

5.已知函数,若关于的不等式恰有1个整数解,则实数的最大值为()

A.2 B.3 C.5 D.8

6.若复数满足,则()

A. B. C.2 D.

7.某几何体的三视图如图所示,则此几何体的体积为()

A. B.1 C. D.

8.在条件下,目标函数的最大值为40,则的最小值是()

A. B. C. D.2

9.如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为()

A. B. C. D.

10.已知函数,则的最小值为()

A. B. C. D.

11.已知函数,其中,若恒成立,则函数的单调递增区间为()

A. B.

C. D.

12.函数满足对任意都有成立,且函数的图象关于点对称,,则的值为()

A.0 B.2 C.4 D.1

二、填空题:本题共4小题,每小题5分,共20分。

13.在回归分析的问题中,我们可以通过对数变换把非线性回归方程,()转化为线性回归方程,即两边取对数,令,得到.受其启发,可求得函数()的值域是_________.

14.已知各项均为正数的等比数列的前项积为,,(且),则__________.

15.在边长为2的正三角形中,,则的取值范围为______.

16.如图,在三棱锥中,平面,,已知,,则当最大时,三棱锥的体积为__________.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)联合国粮农组织对某地区最近10年的粮食需求量部分统计数据如下表:

年份

2010

2012

2014

2016

2018

需求量(万吨)

236

246

257

276

286

(1)由所给数据可知,年需求量与年份之间具有线性相关关系,我们以“年份—2014”为横坐标,“需求量”为纵坐标,请完成如下数据处理表格:

年份—2014

0

需求量—257

0

(2)根据回归直线方程分析,2020年联合国粮农组织计划向该地区投放粮食300万吨,问是否能够满足该地区的粮食需求?

参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为:,.

18.(12分)设点分别是椭圆的左,右焦点,为椭圆上任意一点,且的最小值为1.

(1)求椭圆的方程;

(2)如图,直线与轴交于点,过点且斜率的直线与椭圆交于两点,为线段的中点,直线交直线于点,证明:直线.

19.(12分)对于非负整数集合(非空),若对任意,或者,或者,则称为一个好集合.以下记为的元素个数.

(1)给出所有的元素均小于的好集合.(给出结论即可)

(2)求出所有满足的好集合.(同时说明理由)

(3)若好集合满足,求证:中存在元素,使得中所有元素均为的整数倍.

20.(12分)已知抛物线E:y2=2px(p>0),焦点F到准线的距离为3,抛物线E上的两个动点A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=1.线段AB的垂直平分线与x轴交于点C.

(1)求抛物线E的方程;

(2)求△ABC面积的最大值.

21.(12分)2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销量(万盒)的统计数据如下:

研发费用(百万元)

2

3

6

10

13

15

18

21

销量(万盒)

1

1

2

2.5

3.5

3.5

4.5

6

(1)求与的相关系数精确到0.01,并判断与的关系是否可用线性回归方程模型拟合?(规定:时,可用线性回归方程模型拟合);

(2)该药企准备生产药品的三类

显示全部
相似文档