乌兰察布市重点中学2025届高考冲刺押题(最后一卷)数学试题试卷含解析.doc
乌兰察布市重点中学2025届高考冲刺押题(最后一卷)数学试题试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数()的图像可以是()
A. B.
C. D.
2.已知x,y满足不等式,且目标函数z=9x+6y最大值的变化范围[20,22],则t的取值范围()
A.[2,4] B.[4,6] C.[5,8] D.[6,7]
3.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为()
A.1605π3 B.642
4.已知函数,则的最小值为()
A. B. C. D.
5.某市政府决定派遣名干部(男女)分成两个小组,到该市甲、乙两个县去检查扶贫工作,若要求每组至少人,且女干部不能单独成组,则不同的派遣方案共有()种
A. B. C. D.
6.若平面向量,满足,则的最大值为()
A. B. C. D.
7.如图,已知直线与抛物线相交于A,B两点,且A、B两点在抛物线准线上的投影分别是M,N,若,则的值是()
A. B. C. D.
8.设为抛物线的焦点,,,为抛物线上三点,若,则().
A.9 B.6 C. D.
9.函数的一个单调递增区间是()
A. B. C. D.
10.已知展开式的二项式系数和与展开式中常数项相等,则项系数为()
A.10 B.32 C.40 D.80
11.在四面体中,为正三角形,边长为6,,,,则四面体的体积为()
A. B. C.24 D.
12.已知数列an满足:an=2,n≤5a1
A.16 B.17 C.18 D.19
二、填空题:本题共4小题,每小题5分,共20分。
13.已知椭圆Г:,F1、F2是椭圆Г的左、右焦点,A为椭圆Г的上顶点,延长AF2交椭圆Г于点B,若为等腰三角形,则椭圆Г的离心率为___________.
14.甲、乙、丙、丁四人参加冬季滑雪比赛,有两人获奖.在比赛结果揭晓之前,四人的猜测如下表,其中“√”表示猜测某人获奖,“×”表示猜测某人未获奖,而“○”则表示对某人是否获奖未发表意见.已知四个人中有且只有两个人的猜测是正确的,那么两名获奖者是_______.
甲获奖
乙获奖
丙获奖
丁获奖
甲的猜测
√
×
×
√
乙的猜测
×
○
○
√
丙的猜测
×
√
×
√
丁的猜测
○
○
√
×
15.在的二项展开式中,x的系数为________.(用数值作答)
16.在平面直角坐标系中,双曲线(,)的左顶点为A,右焦点为F,过F作x轴的垂线交双曲线于点P,Q.若为直角三角形,则该双曲线的离心率是______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.
(1)求曲线的极坐标方程和曲线的直角坐标方程;
(2)若直线与曲线,的交点分别为、(、异于原点),当斜率时,求的最小值.
18.(12分)设为坐标原点,动点在椭圆:上,该椭圆的左顶点到直线的距离为.
(1)求椭圆的标准方程;
(2)若椭圆外一点满足,平行于轴,,动点在直线上,满足.设过点且垂直的直线,试问直线是否过定点?若过定点,请写出该定点,若不过定点请说明理由.
19.(12分)如图,在四棱锥中,,,.
(1)证明:平面;
(2)若,,为线段上一点,且,求直线与平面所成角的正弦值.
20.(12分)在平面直角坐标系中,曲线的参数方程是(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.
(Ⅰ)求曲线的普通方程与直线的直角坐标方程;
(Ⅱ)已知直线与曲线交于,两点,与轴交于点,求.
21.(12分)已知椭圆的离心率为,椭圆C的长轴长为4.
(1)求椭圆C的方程;
(2)已知直线与椭圆C交于两点,是否存在实数k使得以线段为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.
22.(10分)如图,在四棱锥中,底面,,,,,点为棱的中点.
(1)证明::
(2)求直线与平面所成角的正弦值;
(3)若为棱上一点,满足,求二面角的余弦值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的