湖北省鄂州市华容高级中学2024-2025学年高三第六次月考试卷数学试题含解析.doc
湖北省鄂州市华容高级中学2024-2025学年高三第六次月考试卷数学试题
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.“”是“函数(为常数)为幂函数”的()
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分又不必要条件
2.已知是定义在上的奇函数,当时,,则()
A. B.2 C.3 D.
3.直三棱柱中,,,则直线与所成的角的余弦值为()
A. B. C. D.
4.已知双曲线的一条渐近线方程为,,分别是双曲线C的左、右焦点,点P在双曲线C上,且,则()
A.9 B.5 C.2或9 D.1或5
5.已知函数()的最小值为0,则()
A. B. C. D.
6.已知三棱锥的外接球半径为2,且球心为线段的中点,则三棱锥的体积的最大值为()
A. B. C. D.
7.执行如图所示的程序框图,若输出的值为8,则框图中①处可以填().
A. B. C. D.
8.已知当,,时,,则以下判断正确的是
A. B.
C. D.与的大小关系不确定
9.在四边形中,,,,,,点在线段的延长线上,且,点在边所在直线上,则的最大值为()
A. B. C. D.
10.在长方体中,,则直线与平面所成角的余弦值为()
A. B. C. D.
11.如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F且EF=,则下列结论中错误的是()
A.AC⊥BE B.EF平面ABCD
C.三棱锥A-BEF的体积为定值 D.异面直线AE,BF所成的角为定值
12.设是双曲线的左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为()
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.一个房间的地面是由12个正方形所组成,如图所示.今想用长方形瓷砖铺满地面,已知每一块长方形瓷砖可以覆盖两块相邻的正方形,即或,则用6块瓷砖铺满房间地面的方法有_______种.
14.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是______cm2,体积是_____
15.在直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数).
(1)求直线和曲线的普通方程;
(2)设为曲线上的动点,求点到直线距离的最小值及此时点的坐标.
16.已知点是抛物线的准线上一点,F为抛物线的焦点,P为抛物线上的点,且,若双曲线C中心在原点,F是它的一个焦点,且过P点,当m取最小值时,双曲线C的离心率为______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)为践行“绿水青山就是金山银山”的发展理念和提高生态环境的保护意识,高二年级准备成立一个环境保护兴趣小组.该年级理科班有男生400人,女生200人;文科班有男生100人,女生300人.现按男、女用分层抽样从理科生中抽取6人,按男、女分层抽样从文科生中抽取4人,组成环境保护兴趣小组,再从这10人的兴趣小组中抽出4人参加学校的环保知识竞赛.
(1)设事件为“选出的这4个人中要求有两个男生两个女生,而且这两个男生必须文、理科生都有”,求事件发生的概率;
(2)用表示抽取的4人中文科女生的人数,求的分布列和数学期望.
18.(12分)在四棱椎中,四边形为菱形,,,,,,分别为,中点..
(1)求证:;
(2)求平面与平面所成锐二面角的余弦值.
19.(12分)已知函数.
(Ⅰ)当时,求不等式的解集;
(Ⅱ)若不等式对任意实数恒成立,求实数的取值范围.
20.(12分)已知椭圆:的两个焦点是,,在椭圆上,且,为坐标原点,直线与直线平行,且与椭圆交于,两点.连接、与轴交于点,.
(1)求椭圆的标准方程;
(2)求证:为定值.
21.(12分)在某社区举行的2020迎春晚会上,张明和王慧夫妻俩参加该社区的“夫妻蒙眼击鼓”游戏,每轮游戏中张明和王慧各蒙眼击鼓一次,每个人击中鼓则得积分100分,没有击中鼓则扣积分50分,最终积分以家庭为单位计分.已知张明每次击中鼓的概率为,王慧每次击中鼓的概率为;每轮游戏中张明和王慧击中与否互不影响,假设张明和王慧他们家庭参加两轮蒙眼击鼓游戏.
(1)若家庭最终积