2025年湖北省武汉市外国语学校下学期普通高中高三教学质量检测试题(一)数学试题含解析.doc
2025年湖北省武汉市外国语学校下学期普通高中高三教学质量检测试题(一)数学试题
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知三棱锥的外接球半径为2,且球心为线段的中点,则三棱锥的体积的最大值为()
A. B. C. D.
2.已知斜率为k的直线l与抛物线交于A,B两点,线段AB的中点为,则斜率k的取值范围是()
A. B. C. D.
3.已知是双曲线的两个焦点,过点且垂直于轴的直线与相交于两点,若,则的内切圆半径为()
A. B. C. D.
4.在中,已知,,,为线段上的一点,且,则的最小值为()
A. B. C. D.
5.已知集合,,若,则()
A.或 B.或 C.或 D.或
6.地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了,达到,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图.根据所给信息,正确的统计结论是()
A.截止到2015年中国累计装机容量达到峰值
B.10年来全球新增装机容量连年攀升
C.10年来中国新增装机容量平均超过
D.截止到2015年中国累计装机容量在全球累计装机容量中占比超过
7.集合的真子集的个数为()
A.7 B.8 C.31 D.32
8.已知函数的图像上有且仅有四个不同的点关于直线的对称点在的图像上,则实数的取值范围是()
A. B. C. D.
9.的内角的对边分别为,已知,则角的大小为()
A. B. C. D.
10.已知函数,且),则“在上是单调函数”是“”的()
A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
11.设函数,若函数有三个零点,则()
A.12 B.11 C.6 D.3
12.下列函数中,值域为R且为奇函数的是()
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数,若关于x的方程有且只有两个不相等的实数根,则实数a的取值范围是_______________.
14.在数列中,,,曲线在点处的切线经过点,下列四个结论:①;②;③;④数列是等比数列;其中所有正确结论的编号是______.
15.已知向量,,,则_________.
16.已知以x±2y=0为渐近线的双曲线经过点,则该双曲线的标准方程为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程以及曲线的直角坐标方程;
(2)若直线与曲线、曲线在第一象限交于两点,且,点的坐标为,求的面积.
18.(12分)某市调硏机构对该市工薪阶层对“楼市限购令”态度进行调查,抽调了50名市民,他们月收入频数分布表和对“楼市限购令”赞成人数如下表:
月收入(单位:百元)
频数
5
10
5
5
频率
0.1
0.2
0.1
0.1
赞成人数
4
8
12
5
2
1
(1)若所抽调的50名市民中,收入在的有15名,求,,的值,并完成频率分布直方图.
(2)若从收入(单位:百元)在的被调查者中随机选取2人进行追踪调查,选中的2人中恰有人赞成“楼市限购令”,求的分布列与数学期望.
(3)从月收入频率分布表的6组市民中分别随机抽取3名市民,恰有一组的3名市民都不赞成“楼市限购令”,根据表格数据,判断这3名市民来自哪组的可能性最大?请直接写出你的判断结果.
19.(12分)已知函数
(1)解不等式;
(2)若函数,若对于任意的,都存在,使得成立,求实数的取值范围.
20.(12分)在平面直角坐标系中,点是直线上的动点,为定点,点为的中点,动点满足,且,设点的轨迹为曲线.
(1)求曲线的方程;
(2)过点的直线交曲线于,两点,为曲线上异于,的任意一点,直线,分别交直线于,两点.问是否为定值?若是,求的值;若不是,请说明理由.