保定市重点中学2025年高三第二次选考模拟考试(2月)数学试题含解析.doc
保定市重点中学2025年高三第二次选考模拟考试(2月)数学试题
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设、,数列满足,,,则()
A.对于任意,都存在实数,使得恒成立
B.对于任意,都存在实数,使得恒成立
C.对于任意,都存在实数,使得恒成立
D.对于任意,都存在实数,使得恒成立
2.如图,圆是边长为的等边三角形的内切圆,其与边相切于点,点为圆上任意一点,,则的最大值为()
A. B. C.2 D.
3.棱长为2的正方体内有一个内切球,过正方体中两条异面直线,的中点作直线,则该直线被球面截在球内的线段的长为()
A. B. C. D.1
4.某几何体的三视图如图所示,若侧视图和俯视图均是边长为的等边三角形,则该几何体的体积为
A. B. C. D.
5.已知函数,则()
A.2 B.3 C.4 D.5
6.两圆和相外切,且,则的最大值为()
A. B.9 C. D.1
7.已知F是双曲线(k为常数)的一个焦点,则点F到双曲线C的一条渐近线的距离为()
A.2k B.4k C.4 D.2
8.如图,圆的半径为,,是圆上的定点,,是圆上的动点,点关于直线的对称点为,角的始边为射线,终边为射线,将表示为的函数,则在上的图像大致为()
A. B. C. D.
9.小王因上班繁忙,来不及做午饭,所以叫了外卖.假设小王和外卖小哥都在12:00~12:10之间随机到达小王所居住的楼下,则小王在楼下等候外卖小哥的时间不超过5分钟的概率是()
A. B. C. D.
10.已知命题:R,;命题:R,,则下列命题中为真命题的是()
A. B. C. D.
11.若实数、满足,则的最小值是()
A. B. C. D.
12.设递增的等比数列的前n项和为,已知,,则()
A.9 B.27 C.81 D.
二、填空题:本题共4小题,每小题5分,共20分。
13.某几何体的三视图如图所示(单位:),则该几何体的体积是_____;最长棱的长度是_____.
14.已知函数,则曲线在处的切线斜率为________.
15.若函数,其中且,则______________.
16.已知函数是定义在上的奇函数,且周期为,当时,,则的值为___________________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知抛物线的焦点为,准线与轴交于点,点在抛物线上,直线与抛物线交于另一点.
(1)设直线,的斜率分别为,,求证:常数;
(2)①设的内切圆圆心为的半径为,试用表示点的横坐标;
②当的内切圆的面积为时,求直线的方程.
18.(12分)已知公比为正数的等比数列的前项和为,且,.
(1)求数列的通项公式;
(2)设,求数列的前项和.
19.(12分)设函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)如果对所有的≥0,都有≤,求的最小值;
(Ⅲ)已知数列中,,且,若数列的前n项和为,求证:
.
20.(12分)在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为(),M为该曲线上的任意一点.
(1)当时,求M点的极坐标;
(2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.
21.(12分)如图在棱锥中,为矩形,面,
(1)在上是否存在一点,使面,若存在确定点位置,若不存在,请说明理由;
(2)当为中点时,求二面角的余弦值.
22.(10分)(江苏省徐州市高三第一次质量检测数学试题)在平面直角坐标系中,已知平行于轴的动直线交抛物线:于点,点为的焦点.圆心不在轴上的圆与直线,,轴都相切,设的轨迹为曲线.
(1)求曲线的方程;
(2)若直线与曲线相切于点,过且垂直于的直线为,直线,分别与轴相交于点,.当线段的长度最小时,求的值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.D
【解析】
取,可排除AB;由蛛网图可得数列的单调情况,进而得到要使,只需,由此可得到答案.
【