文档详情

2025届绍兴市重点中学高三数学试题模拟试卷(二)数学试题含解析.doc

发布:2025-04-18约6.6千字共22页下载文档
文本预览下载声明

2025届绍兴市重点中学高三数学试题模拟试卷(二)数学试题

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。

4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数,则()

A. B. C. D.2

2.已知双曲线:(,)的右焦点与圆:的圆心重合,且圆被双曲线的一条渐近线截得的弦长为,则双曲线的离心率为()

A.2 B. C. D.3

3.一个几何体的三视图及尺寸如下图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,该几何体的表面积是()

A.

B.

C.

D.

4.甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如图所示.

①甲同学成绩的中位数大于乙同学成绩的中位数;

②甲同学的平均分比乙同学的平均分高;

③甲同学的平均分比乙同学的平均分低;

④甲同学成绩的方差小于乙同学成绩的方差.

以上说法正确的是()

A.③④ B.①② C.②④ D.①③④

5.等比数列中,,则与的等比中项是()

A.±4 B.4 C. D.

6.网络是一种先进的高频传输技术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精确到月)()

A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月

7.已知向量,,当时,()

A. B. C. D.

8.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为,大圆柱底面半径为,如图1放置容器时,液面以上空余部分的高为,如图2放置容器时,液面以上空余部分的高为,则()

A. B. C. D.

9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积()

A. B. C. D.

10.已知复数z满足i?z=2+i,则z的共轭复数是()

A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i

11.设抛物线的焦点为F,抛物线C与圆交于M,N两点,若,则的面积为()

A. B. C. D.

12.已知函数若关于的方程有六个不相等的实数根,则实数的取值范围为()

A. B. C. D.

二、填空题:本题共4小题,每小题5分,共20分。

13.已知实数x,y满足(2x-y)2+4y2

14.已知双曲线:(,),直线:与双曲线的两条渐近线分别交于,两点.若(点为坐标原点)的面积为32,且双曲线的焦距为,则双曲线的离心率为________.

15.在平面直角坐标系中,双曲线的焦距为,若过右焦点且与轴垂直的直线与两条渐近线围成的三角形面积为,则双曲线的离心率为____________.

16.,则f(f(2))的值为____________.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)设函数.

(1)求不等式的解集;

(2)若的最小值为,且,求的最小值.

18.(12分)已知抛物线的焦点也是椭圆的一个焦点,与的公共弦的长为.

(1)求的方程;

(2)过点的直线与相交于、两点,与相交于、两点,且与同向,设在点处的切线与轴的交点为,证明:直线绕点旋转时,总是钝角三角形;

(3)为上的动点,、为长轴的两个端点,过点作的平行线交椭圆于点,过点作的平行线交椭圆于点,请问的面积是否为定值,并说明理由.

19.(12分)已知椭圆()的离心率为,且经过点.

(1)求椭圆的方程;

(2)过点作直线与椭圆交于不同的两点,,试问在轴上是否存在定点使得直线与直线恰关于轴对称?若存在,求出点的坐标;若不存在,说明理由.

20.(12分)已知函数f(x)=xlnx,g(x)=,

(1)求f(x)的最小值;

(2)对任意,都有恒成立,

显示全部
相似文档