文档详情

2025届内蒙古乌兰察布市集宁第一中学新高三起点调研测试数学试题试卷含解析.doc

发布:2025-04-20约6.86千字共22页下载文档
文本预览下载声明

2025届内蒙古乌兰察布市集宁第一中学新高三起点调研测试数学试题试卷

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知双曲线的一个焦点与抛物线的焦点重合,则双曲线的离心率为()

A. B. C.3 D.4

2.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().

A.收入最高值与收入最低值的比是

B.结余最高的月份是月份

C.与月份的收入的变化率与至月份的收入的变化率相同

D.前个月的平均收入为万元

3.以下四个命题:①两个随机变量的线性相关性越强,相关系数的绝对值越接近1;②在回归分析中,可用相关指数的值判断拟合效果,越小,模型的拟合效果越好;③若数据的方差为1,则的方差为4;④已知一组具有线性相关关系的数据,其线性回归方程,则“满足线性回归方程”是“,”的充要条件;其中真命题的个数为()

A.4 B.3 C.2 D.1

4.已知复数满足,则=()

A. B.

C. D.

5.已知、是双曲线的左右焦点,过点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点,若点在以线段为直径的圆外,则双曲线离心率的取值范围是()

A. B. C. D.

6.已知复数和复数,则为

A. B. C. D.

7.已知,则的大小关系为()

A. B. C. D.

8.已知抛物线的焦点为,为抛物线上一点,,当周长最小时,所在直线的斜率为()

A. B. C. D.

9.若直线经过抛物线的焦点,则()

A. B. C.2 D.

10.在直角梯形中,,,,,点为上一点,且,当的值最大时,()

A. B.2 C. D.

11.某三棱锥的三视图如图所示,则该三棱锥的体积为

A. B. C.2 D.

12.函数在上的图象大致为()

A. B. C. D.

二、填空题:本题共4小题,每小题5分,共20分。

13.若,,则___________.

14.秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,如图所示的框图给出了利用秦九韶算法求多项式值的一个实例,若输入,的值分別为4,5,则输出的值为______.

15.已知直线与圆心为的圆相交于两点,且,则实数的值为_________.

16.已知,,,,则______.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)已知离心率为的椭圆经过点.

(1)求椭圆的方程;

(2)荐椭圆的右焦点为,过点的直线与椭圆分别交于,若直线、、的斜率成等差数列,请问的面积是否为定值?若是,求出此定值;若不是,请说明理由.

18.(12分)如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.

求证:(1)AM∥平面BDE;

(2)AM⊥平面BDF.

19.(12分)在平面直角坐标系xOy中,已知平行于x轴的动直线l交抛物线C:于点P,点F为C的焦点.圆心不在y轴上的圆M与直线l,PF,x轴都相切,设M的轨迹为曲线E.

(1)求曲线E的方程;

(2)若直线与曲线E相切于点,过Q且垂直于的直线为,直线,分别与y轴相交于点A,当线段AB的长度最小时,求s的值.

20.(12分)已知函数,.

(1)求证:在区间上有且仅有一个零点,且;

(2)若当时,不等式恒成立,求证:.

21.(12分)曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的直角坐标方程;

(2)若直线与曲线,的交点分别为、(、异于原点),当斜率时,求的最小值.

22.(10分)已知椭圆C:(a>b>0)的两个焦点分别为F1(-,0)、F2(,0).点M(1,0)与椭圆短轴的两个端点的连线相互垂直.

(1)求椭圆C的方程;

(2)已知点N的坐标为(3,2),点P的坐标为(m,n)(m≠3).过点M任作直线l与椭圆C相交于A、B两点,设直线AN、NP、BN的斜率分别为k1、k2、k3,若k1+k3=2k2,试求m,n满足的关系式.

参考答案

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A

【解析】

根据题意,由抛物线的方程可得其焦点坐标,由此可得双曲线的焦点坐标,由双曲线的

显示全部
相似文档