2024-2025学年江西省五市八校高中毕业生复习统一检测试题数学试题试卷含解析.doc
2024-2025学年江西省五市八校高中毕业生复习统一检测试题数学试题试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设不等式组,表示的平面区域为,在区域内任取一点,则点的坐标满足不等式的概率为
A. B.
C. D.
2.函数的一个零点在区间内,则实数a的取值范围是()
A. B. C. D.
3.已知复数满足,其中是虚数单位,则复数在复平面中对应的点到原点的距离为()
A. B. C. D.
4.函数的图象大致是()
A. B.
C. D.
5.复数的共轭复数在复平面内所对应的点位于()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6.已知为虚数单位,若复数,则
A. B.
C. D.
7.相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调.如图的程序是与“三分损益”结合的计算过程,若输入的的值为1,输出的的值为()
A. B. C. D.
8.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是()
A. B. C. D.
9.已知,则的值等于()
A. B. C. D.
10.已知函数,若,则的最小值为()
参考数据:
A. B. C. D.
11.已知实数,满足约束条件,则的取值范围是()
A. B. C. D.
12.已知、是双曲线的左右焦点,过点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点,若点在以线段为直径的圆外,则双曲线离心率的取值范围是()
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知椭圆的左、右焦点分别为、,过椭圆的右焦点作一条直线交椭圆于点、.则内切圆面积的最大值是_________.
14.已知,则_____
15.已知数列为正项等比数列,,则的最小值为________.
16.已知函数在定义域R上的导函数为,若函数没有零点,且,当在上与在R上的单调性相同时,则实数k的取值范围是______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)记抛物线的焦点为,点在抛物线上,且直线的斜率为1,当直线过点时,.
(1)求抛物线的方程;
(2)若,直线与交于点,,求直线的斜率.
18.(12分)已知函数.
(1)解不等式;
(2)使得,求实数的取值范围.
19.(12分)在中,设、、分别为角、、的对边,记的面积为,且.
(1)求角的大小;
(2)若,,求的值.
20.(12分)在平面直角坐标系中,已知抛物线C:()的焦点F在直线上,平行于x轴的两条直线,分别交抛物线C于A,B两点,交该抛物线的准线于D,E两点.
(1)求抛物线C的方程;
(2)若F在线段上,P是的中点,证明:.
21.(12分)为增强学生的法治观念,营造“学宪法、知宪法、守宪法”的良好校园氛围,某学校开展了“宪法小卫士”活动,并组织全校学生进行法律知识竞赛.现从全校学生中随机抽取50名学生,统计他们的竞赛成绩,已知这50名学生的竞赛成绩均在[50,100]内,并得到如下的频数分布表:
分数段
[50,60)
[60,70)
[70,80)
[80,90)
[90,100]
人数
5
15
15
12
3
(1)将竞赛成绩在内定义为“合格”,竞赛成绩在内定义为“不合格”.请将下面的列联表补充完整,并判断是否有的把握认为“法律知识竞赛成绩是否合格”与“是否是高一新生”有关?
合格
不合格
合计
高一新生
12
非高一新生
6
合计
(2)在(1)的前提下,按“竞赛成绩合格与否”进行分层抽样,从这50名学生中抽取5名学生,再从这5名学生中随机抽取2名学生,求这2名学生竞赛成绩都合格的概率.
参考公式及数据:,其中.
22.(10分)已知函数.
(1)求不等式的解集;
(2)设的最小值为,正数,满足,证明:.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A
【解析】
画出不等式组表示的区域,求出其面积,再得到在区域内的面积,根据几何概型的公式,得到答案.
【详解】
画出所表示的区域,易知,