文档详情

2024-2025学年山东省威海市乳山一中高考模拟考试试题数学试题试卷含解析.doc

发布:2025-04-20约7.15千字共20页下载文档
文本预览下载声明

2024-2025学年山东省威海市乳山一中高考模拟考试试题数学试题试卷

考生请注意:

1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.某地区高考改革,实行“3+2+1”模式,即“3”指语文、数学、外语三门必考科目,“1”指在物理、历史两门科目中必选一门,“2”指在化学、生物、政治、地理以及除了必选一门以外的历史或物理这五门学科中任意选择两门学科,则一名学生的不同选科组合有()

A.8种 B.12种 C.16种 D.20种

2.已知直线与直线则“”是“”的()

A.充分不必要条件 B.必要不充分条件

C.充分必要条件 D.既不充分也不必要条件

3.音乐,是用声音来展现美,给人以听觉上的享受,熔铸人们的美学趣味.著名数学家傅立叶研究了乐声的本质,他证明了所有的乐声都能用数学表达式来描述,它们是一些形如的简单正弦函数的和,其中频率最低的一项是基本音,其余的为泛音.由乐声的数学表达式可知,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波.下列函数中不能与函数构成乐音的是()

A. B. C. D.

4.已知集合,则=

A. B. C. D.

5.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.

①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分;

②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间110,120内;

③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关;

④乙同学连续九次测验成绩每一次均有明显进步.

其中正确的个数为()

A.4 B.3 C.2 D.1

6.已知函数(其中,,)的图象关于点成中心对称,且与点相邻的一个最低点为,则对于下列判断:

①直线是函数图象的一条对称轴;

②点是函数的一个对称中心;

③函数与的图象的所有交点的横坐标之和为.

其中正确的判断是()

A.①② B.①③ C.②③ D.①②③

7.记其中表示不大于x的最大整数,若方程在在有7个不同的实数根,则实数k的取值范围()

A. B. C. D.

8.已知,则()

A.2 B. C. D.3

9.已知,且,则在方向上的投影为()

A. B. C. D.

10.复数的实部与虚部相等,其中为虚部单位,则实数()

A.3 B. C. D.

11.若,满足约束条件,则的最大值是()

A. B. C.13 D.

12.下列命题是真命题的是()

A.若平面,,,满足,,则;

B.命题:,,则:,;

C.“命题为真”是“命题为真”的充分不必要条件;

D.命题“若,则”的逆否命题为:“若,则”.

二、填空题:本题共4小题,每小题5分,共20分。

13.已知抛物线的焦点为,斜率为2的直线与的交点为,若,则直线的方程为___________.

14.已知曲线,点,在曲线上,且以为直径的圆的方程是.则_______.

15.已知函数,则过原点且与曲线相切的直线方程为____________.

16.如图是一个算法流程图,若输出的实数的值为,则输入的实数的值为______________.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)某公司打算引进一台设备使用一年,现有甲、乙两种设备可供选择.甲设备每台10000元,乙设备每台9000元.此外设备使用期间还需维修,对于每台设备,一年间三次及三次以内免费维修,三次以外的维修费用均为每次1000元.该公司统计了曾使用过的甲、乙各50台设备在一年间的维修次数,得到下面的频数分布表,以这两种设备分别在50台中的维修次数频率代替维修次数发生的概率.

维修次数

2

3

4

5

6

甲设备

5

10

30

5

0

乙设备

0

5

15

15

15

(1)设甲、乙两种设备每台购买和一年间维修的花费总额分别为和,求和的分布列;

(2)若以数学期望为决策依据,希望设备购买和一年间维修的花费总额尽量低,且维修次数尽量少,则需要购买哪种设备?请说明理由.

18.(12分)已知函数.

(1)若在上单调递增,求实数的取值范围;

(2)若,对,恒有成立,求实数的最小值.

19.(12分)已知函数,其中,.

(1)函数的图象能否与x轴相切?若能,求出实数a;若不能,请说明理由.

(2)若在处取得极大值,求实

显示全部
相似文档