新疆维吾尔自治区乌鲁木齐市第八十六中学2024-2025学年八年级下学期第一次月考 数学试题(含解析).docx
2024-2025学年第二学期数学第一次月考(问卷)
一.选择题(共9小题)
1.下列二次根式中,属于最简二次根式的是()
A. B. C. D.
【答案】B
【解析】
【分析】本题考查最简二次根式.根据最简二次根式:被开方数不含分母,不含能开方开的尽的因式和因数,进行判断即可.
【详解】解:A、,不是最简二次根式,不符合题意;
B、是最简二次根式,符合题意;
C、,不是最简二次根式,不符合题意;
D、,不是最简二次根式,不符合题意;
故选:B.
2.以下列各数为边长,能构成直角三角形的是()
A1,2,3 B.2,3,4 C.3,4,5 D.4,5,6
【答案】C
【解析】
【分析】此题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.掌握勾股定理的逆定理是解题的关键.
【详解】解:A、因为,所以不能构成直角三角形;
B、因为,所以不能构成直角三角形;
C、因为,所以能构成直角三角形;
D、因为,所以不能构成直角三角形.
故选:C.
3.下列各式中,正确是()
A. B. C. D.
【答案】C
【解析】
【分析】本题考查了算术平方根、平方根、立方根、二次根式的性质,根据算术平方根、平方根、立方根、二次根式的性质逐项分析即可得解,熟练掌握算术平方根、平方根、立方根、二次根式的性质是解此题的关键.
【详解】解:A、,则A不符合题意;
B、,则B不符合题意;
C、,则C符合题意;
D、,则D不符合题意;
故选:C.
4.如图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()
A., B.,
C., D.,
【答案】B
【解析】
【分析】本题考查了平行四边形的判定,(1)两组对边分别平行的四边形是平行四边形,(2)一组对边平行且相等的四边形是平行四边形,(3)对角线互相平分的四边形是平行四边形.根据平行四边形的判定方法判断得出即可.
【详解】解:A、,,推出,,则能判定这个四边形是平行四边形,本选项不符合题意;
B、,,不能判定这个四边形是平行四边形,本选项符合题意;
C、由,推出,又,能判定这个四边形是平行四边形,本选项不符合题意;
D、,,能判定这个四边形是平行四边形,本选项不符合题意;
故选:B.
5.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、4、1、3,则最大的正方形E的面积是()
A.25 B.35 C.40 D.11
【答案】B
【解析】
【分析】本题考查的是勾股定理,解题的关键是掌握直角三角形两直角边平方和等于斜边平方.
根据勾股定理分别求出正方形F、正方形G的面积,再根据勾股定理计算出E的面积即可.
【详解】解:∵正方形A、B、C、D的边长分别是3、4、1、3,
∴正方形F的面积,正方形G的面积,
∴正方形E的面积=正方形F的面积+正方形G的面积,
故选:B.
6.如图,长方形的边长为2,边长为1,在数轴上,以原点O为圆心,对角线的长为半径画弧,交正半轴于一点,则这个点表示的实数是()
A. B. C. D.2.5
【答案】C
【解析】
【分析】本题考查了勾股定理、实数与数轴,由勾股定理计算出,由此即可得到答案,熟练掌握勾股定理是解此题的关键.
【详解】解:,,
,
以原点O为圆心,对角线的长为半径画弧,交正半轴于一点,则这个点表示的实数是,
故选:C.
7.如图,为了测量池塘边A、B两地之间的距离,在线段的同侧取一点C,连结并延长至点D,连结并延长至点E,使得A、B分别是的中点,若,则线段的长度是()
A B. C. D.
【答案】C
【解析】
【分析】本题主要考查三角形中位线定理,熟练掌握中位线的性质是解题的关键.根据题意得到即可得到答案.
【详解】解:A、B分别是的中点,
是的中位线,
,
故选C.
8.下列命题的逆命题是假命题的是()
A.同旁内角互补,两直线平行
B.角平分线上的点到角的两边距离相等
C.若两实数相等,则这两个数的绝对值一定相等
D.全等三角形的对应边相等
【答案】C
【解析】
【分析】本题主要考查了逆命题的真假,写出原命题的逆命题是解答本题的关键.先分别写出原命题的逆命题,然后再根据相关知识判断正误即可.
【详解】解:A、逆命题为:两直线平行,同旁内角互补,正确,是真命题,不符合题意;
B、逆命题为:到一个角的两边距离相等的点在这个角的平分线上,正确,是真命题,不符合题意;
C、逆命题为:若两实数的绝对值相