最新小学数学应用题常考类型,就这几个知识点!.DOC
文本预览下载声明
PAGE / NUMPAGES
一、植树问题
1、非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2、封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
二、置换问题
题中有二个未知数;常常把其中一个未知数暂时当作另一个未知数;然后根据已知条件进行假设性的运算。其结果往往与条件不符合;再加以适当的调整;从而求出结果。
例:一个集邮爱好者买了10分和20分的邮票共100张;总值18元8角。这个集邮爱好者买这两种邮票各多少张?
分析:先假定买来的100张邮票全部是20分一张的;那么总值应是20×100=20xx(分);比原来的总值多20xx-1880=120(分)。而这个多的120分;是把10分一张的看作是20分一张的;每张多算20-10=10(分);如此可以求出10分一张的有多少张。
列式:(20xx-1880)÷(20-10)=120÷10 =12(张)→10分一张的张数 ;100-12=88(张)→20分一张的张数或是先求出20分一张的张数;再求出10分一张的张数;方法同上;注意总值比原来的总值少。
三、盈亏问题(盈不足问题)
题目中往往有两种分配方案;每种分配方案的结果会出现多(盈)或少(亏)的情况;通常把这类问题;叫做盈亏问题(也叫做盈不足问题)。解答这类问题时;应该先将两种分配方案进行比较;求出由于每份数的变化所引起的余数的变化;从中求出参加分配的总份数;然后根据题意;求出被分配物品的数量。其计算方法是:
当一次有余数;另一次不足时:每份数=(余数+不足数)÷两次每份数的差
当两次都有余数时:总份数=(较大余数-较小数)÷两次每份数的差
当两次都不足时:总份数=(较大不足数-较小不足数)÷两次每份数的差
例:学校把一些彩色铅笔分给美术组的同学;如果每人分给五支;则剩下45支;如果每人分给7支;则剩下3支。求美术组有多少同学?彩色铅笔共有几支?
(45—3)÷(7-5)=21(人) 21×5+45=150(支)
四、年龄问题
年龄问题的主要特点是两人的年龄差不变;而倍数差却发生变化。
常用的计算公式是:
成倍时小的年龄=大小年龄之差÷(倍数-1)
几年前的年龄=小的现年-成倍数时小的年龄
几年后的年龄=成倍时小的年龄-小的现在年龄
例:父亲今年54岁;儿子今年12岁。几年后父亲的年龄是儿子年龄的4倍?
(54-12)÷(4-1)=42÷3 =14(岁)→儿子几年后的年龄 ;14-12=2(年)→2年后
答:2年后父亲的年龄是儿子的4倍。
五、牛吃草问题(船漏水问题)
若干头牛在一片有限范围内的草地上吃草。牛一边吃草;草地上一边长草。当增加(或减少)牛的数量时;这片草地上的草经过多少时间就刚好吃完呢?
例:一片草地;可供15头牛吃10天;而供25头牛吃;可吃5天。如果青草每天生长速度一样;那么这片草地若供10头牛吃;可以吃几天?
分析:一般把1头牛每天的吃草量看作每份数;那么15头牛吃10天;其中就有草地上原有的草;加上这片草地10天长出草;以下类推……其中可以发现25头牛5天的吃草量比15头牛10天的吃草量要少。原因是因为其一;用的时间少;其二;对应的长出来的草也少。这个差就是这片草地5天长出来的草。每天长出来的草可供5头牛吃一天。如此当供10牛吃时;拿出5头牛专门吃每天长出来的草;余下的牛吃草地上原有的草。
(15×10-25×5)÷(10-5)=(150-125)÷(10-5) =25÷5 =5(头)→可供5头牛吃一天。
150-10×5 =150-50 =100(头)→草地上原有的草可供100头牛吃一天 ;100÷(10-5) =100÷5 =20(天)
答:若供10头牛吃;可以吃20天。
六、相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
显示全部