中南大学《离散数学》课件-第7章(英文版).ppt
AlgebraicSystem
Copyright2007@byXuDezhiAgendaOperationsAlgebraicsystemProductalgebraCongruencerelationQuotientalgebraHomomorphismandIsomorphism2
Copyright2007@byXuDezhiBinaryOperationDefinition1GivenasetA,map?:A×A→Aiscalledabinaryoperation.Definition2GivenasetA,mapiscalledan-aryoperation.3
Copyright2007@byXuDezhiRepresentingunaryandbinaryoperationExample:OnA={1,3,5,7},Unaryoperation~andbinaryoperation*arerepresentedas4
Copyright2007@byXuDezhiPropertiesofoperationAssociativelaw:(a*b)*c=a*(b*c)Distributivelaw:aο(b*c)=(aοb)*(aοc)(b*c)οa=(bοa)*(cοa)OperationsmayhaveotherpropertiesCommutative:if?x,y∈A,xοy=yοxAssociative:if?x,y,z∈A,(xοy)οz=xο(yοz)5
Copyright2007@byXuDezhiSpecialelementsLetAbeasetonwhichthereisabinaryoperation.Anelementeofthissetiscalledaleftidentityifforalla?Ael*a=aLeftidentitySimilarlya*er=aRightidentitye*a=a*e=aIdentity6
SpecialelementsExample:Copyright2007@byXuDezhibanddare*’sleftidentityaisrightidentityofοabcdabcdoabcddabcabcdabccabcdabcdabdcbacdcdabddbc*7
Copyright2007@byXuDezhiSpecialelementsZeroelementzz*a=a*z=zInverseal-1*a=ea*ar-1=ea-1*a=a*a-1=e8
Copyright2007@byXuDezhiAlgebraicSystemDefinition4Analgebraicsystem(AS)isatripleA=A,O,C,inwhichUnderlyingSet:A≠φOperationSet:,whereOiisthesetofi-aryoperationsonA.?o∈Oi,R(o)denotestherankofoConstantSet:C?A9
Copyright2007@byXuDezhiAlgebraicSystemExampleWejustcareaboutsuchASwithfiniteoperations:A1=〈N,{+},{0}〉A2=〈R,{+,×},{0,1}〉A3=〈Mn(R),{+,·},{0,1}〉A3=〈2A,{∪,∩},{?}〉andetc…10
Copyright2007@byXuDezhiAlgebraicSystemConstructMoreASsTask:GivensomeAS’sA,B,···,howtoconstructmoreAS’sfromA,B,···?AlgebraicsubsystemPro