湖北省孝感市孝南区肖港初级中学2024年中考数学猜题卷含解析.doc
湖北省孝感市孝南区肖港初级中学2024年中考数学猜题卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.已知m=,n=,则代数式的值为()
A.3 B.3 C.5 D.9
2.已知二次函数y=ax2+bx+c的图像经过点(0,m)、(4、m)、(1,n),若n<m,则()
A.a>0且4a+b=0 B.a<0且4a+b=0
C.a>0且2a+b=0 D.a<0且2a+b=0
3.下列四个实数中,比5小的是()
A. B. C. D.
4.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()
A.﹣=10 B.﹣=10
C.﹣=10 D.+=10
5.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正确的是()
A.a=b?cosA B.c=a?sinA C.a?cotA=b D.a?tanA=b
6.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有()
A.5个B.4个C.3个D.2个
7.如图,OP平分∠AOB,PC⊥OA于C,点D是OB上的动点,若PC=6cm,则PD的长可以是()
A.7cm B.4cm C.5cm D.3cm
8.将一根圆柱形的空心钢管任意放置,它的主视图不可能是()
A. B. C. D.
9.下列运算结果为正数的是()
A.1+(–2) B.1–(–2) C.1×(–2) D.1÷(–2)
10.估计+1的值在()
A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
二、填空题(本大题共6个小题,每小题3分,共18分)
11.关于x的分式方程=2的解为正实数,则实数a的取值范围为_____.
12.如图,五边形是正五边形,若,则__________.
13.一艘货轮以182km/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B,货轮继续向东航行30分钟后到达C处,发现灯塔B在它的南偏东15°方向,则此时货轮与灯塔B的距离是________km.
14.已知整数k<5,若△ABC的边长均满足关于x的方程,则△ABC的周长是.
15.在直角坐标系平面内,抛物线y=3x2+2x在对称轴的左侧部分是_____的(填“上升”或“下降”)
16.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是_____m.
三、解答题(共8题,共72分)
17.(8分)如图,菱形ABCD中,已知∠BAD=120°,∠EGF=60°,∠EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC、CD于E、F.
(1)如图甲,当顶点G运动到与点A重合时,求证:EC+CF=BC;
(2)知识探究:
①如图乙,当顶点G运动到AC的中点时,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);
②如图丙,在顶点G运动的过程中,若,探究线段EC、CF与BC的数量关系;
(3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=,当>2时,求EC的长度.
18.(8分)(1)计算:.
(2)解方程:x2﹣4x+2=0
19.(8分)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.
求此抛物线的解析式;求C、D两点坐标及△BCD的面积;若点P在x轴上方的抛物线上,满足S△PCD=S△BCD,求点P的坐标.
20.(8分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.
21.(8分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.求证:四边形ACDF是平行四边形;当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.
22.(1