注塑模具英文翻译.doc
文本预览下载声明
Minimizing manufacturing costs for thin injection
molded plastic components
Introduction
In most industrial applications, the manufacturing cost of a plastic part is mainly governed by the amount of material used in the molding process.
Thus, current approaches for plastic part design and manufacturing focus primarily on establishing the minimum part thickness to reduce material usage.
The assumption is that designing the mold and molding processes to the minimum thickness requirement should lead to the minimum manufacturing cost.
Nowadays, electronic products such as mobile phones and medical devices are becoming ever more complex and their sizes are continually being reduced.
The demand for small and thin plastic components for miniaturization assembly has considerably increased in recent years.
Other factors besides minimal material usage may also become important when manufacturing thin plastic components.
In particular, for thin parts, the injection molding pressure may become significant and has to be considered in the first phase of manufacturing.
Employing current design approaches for plastic parts will fail to produce the true minimum manufacturing cost in these cases.
Thus, tackling thin plastic parts requires a new approach, alongside existing mold design principles and molding techniques.
1.1 Current research
Today, computer-aided simulation software is essential for the design of plastic parts and molds. Such software increases the efficiency of the design process by reducing the design cost and lead time [1].
Major systems, such as Mold Flow and C-Flow, use finite element analysis to simulate the filling phenomena, including flow patterns and filling sequences. Thus, the molding conditions can be predicted and validated, so that early design modifications can be achieved. Although available software is capable of analyzing the flow conditions, and the stress and the temperature distribution conditions of the component under various molding scenarios,
显示全部