2.5.1平面向量应用举例.ppt
文本预览下载声明
平面几何中的向量方法 向量概念和运算,都有明确的物理背景和几何背景。当向量与平面坐标系结合以后,向量的运算就可以完全转化为“代数”的计算,这就为我们解决物理问题和几何研究带来极大的方便。 由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何的许多性质,如平移、全等、相似、长度、夹角都可以由向量的线性运算及数量积表示出来,因此,利用向量方法可以解决平面几何中的一些问题。 问题:平行四边形是表示向量加法与减法的几何模型。如图,你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗? 解:设 则 * * 2.5平面向量应用举例 2.5.1平面几何的向量方法 A B C D 猜想: 1.长方形对角线的长度与两条邻边长度之间有何关系? 2.类比猜想,平行四边形有相似关系吗? 例1、证明平行四边形四边平方和等于两对角线平方和 A B D C 已知:平行四边形ABCD。 求证: 解:设 ,则 分析:因为平行四边形对边平行且相 等,故设 其它线段对应向 量用它们表示。 ∴ 你能总结一下利用向量法解决平面几何问题的基本思路吗? (1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题; (2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; (3)把运算结果“翻译”成几何元素。 用向量方法解决平面几何问题的“三步曲”: 简述:形到向量 向量的运算 向量和数到形 例2 如图, ABCD中,点E、F分别是AD 、 DC边的中点,BE 、 BF分别与AC交于R 、 T两点,你能发现AR 、 RT 、TC之间的关系吗? A B C D E F R T 猜想: AR=RT=TC 由于 与 共线,故设 又因为 共线, 所以设 因为 所以 A B C D E F R T 线, 故AT=RT=TC A B C D E F R T 练习、证明直径所对的圆周角是直角 A B C O 如图所示,已知⊙O,AB为直径,C 为⊙O上任意一点。求证∠ACB=90° 分析:要证∠ACB=90°,只须证向 量 ,即 。 解:设 则 , 由此可得: 即 ,∠ACB=90° 思考:能否用向量 坐标形式证明? (1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题; (2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; (3)把运算结果“翻译”成几何元素。 小结: 用向量方法解决平面几何问题的“三步曲”: 作业: 课本P125 1,2
显示全部