文档详情

次函数的实际应用(商品问题).ppt

发布:2017-11-18约3.14千字共20页下载文档
文本预览下载声明
问题1.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。据市场调查反映:如果调整价格?,每涨价1元,每星期要少卖出10件。要想获得6090元的利润,该商品应定价为多少元? 分析:设销售单价涨了x元,那么每件商品的利润可表示为 元,每周的销售量可表示为 件,一周的利润可表示为 元,要想获得6090元利润可列方程 。 若设销售单价定为x元,那么每件商品的利润可表示为 元,每周的销售量可表示为 件,一周的利润可表示 为 元,要想获得6090元利润可列方程 . 在上题中,若商场规定试销期间获利不得低于40%又不得高于60%,则销售单价定为多少时,商场可获得最大利润?最大利润是多少? 解:设商品售价为x元,则x的取值范围 为40(1+40%)≤x≤40(1+60%) 即56≤x≤64 (10中考)某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销量就减少10件.设销售单价为x元(x≥50),一周的销售量为y件. 五、自主评价 1.谈谈这节课你的收获 2.总结解这类最大利润问题的一般步骤 (1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围; (2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值。 利达销售店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理)。当每吨售价为260元时,月销售量45吨,该经销店为提高经营利润,准备采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨,综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其他费用100元,设每吨材料售价为x元,该经销店的月利润为y元。 (1)当每吨售价是240元时,计算此时的月销售量; (2)求出y与x的函数关系式(不要求写出x的取值范围); (3)该经销店要获得最大月利润,售价应定为每吨多少元; (4)小明说:“当月利润最大时,月销售额也最大”,你认为对吗?请说明理由。 * * (20+x) (300-10x) (20+x)( 300-10x) (20+x)( 300-10x) =6090 (x-40) 【300-10(x-60)】 (x-40)[300-10(x-60)] (x-40)[300-10(x-60)]=6090 问题2.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格?,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润? y=(x-40)[300-10(x-60)] 解设单价定为x元,商场获得的利润为y元 (0≤x≤30) 问题2.已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格?,每涨价一元,每星期要少卖出10件;每降价一元,每星期 可多卖出20件。如何定价才能使利润最大? 解:设每件涨价为x元时获得的总利润为y元. y =(60-40+x)(300-10x) =(20+x)(300-10x) =-10x2+100x+6000 =-10(x2-10x-600) =-10[(x-5)2-25-600] =-10(x-5)2+6250 当x=5时,y的最大值是6250. 定价:60+5=65(元) (0≤x≤30) 怎样确定x的取值范围 解:设每件降价x元时的总利润为y元. y=(60-40-x)(300+20x) =(20-x)(300+20x) =-20x2+100x+6000 =-20(x2-5x-300) =-20(x-2.5)2+6125 (0≤x≤20) 所以定价为60-2.5=57.5时利润最大,最大值为6125元. 答:综合以上两种情况,定价为65元时 可获得最大利润为6250元. 怎样确定x的取值范围 问题2.已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格?,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大? 若涨价促销,则利润 y=(x-40)[300-10(x-
显示全部
相似文档