文档详情

实验四信号抽样与调制解调.docx

发布:2017-05-21约1.1万字共18页下载文档
文本预览下载声明
实验四 信号抽样与调制解调 一、实验目的 1、进一步理解信号的抽样及抽样定理; 2、进一步掌握抽样信号的频谱分析; 3、掌握和理解信号抽样以及信号重建的原理; 4、掌握傅里叶变换在信号调制与解调中的应用。 基本要求:掌握并理解“抽样”的概念,理解抽样信号的频谱特征。深刻理解抽样定理及其重要意义。一般理解信号重建的物理过程以及内插公式所描述的信号重建原理。理解频率混叠的概念。理解调制与解调的基本概念,理解信号调制过程中的频谱搬移。掌握利用MATLAB仿真正弦幅度调制与解调的方法。 二、实验原理及方法 1、信号的抽样及抽样定理 抽样(Sampling),就是从连续时间信号中抽取一系列的信号样本,从而,得到一个离散时间序列(Discrete-time sequence),这个离散序列经量化(Quantize)后,就成为所谓的数字信号(Digital Signal)。今天,很多信号在传输与处理时,都是采用数字系统(Digital system)进行的,但是,数字系统只能处理数字信号,不能直接处理连续时间信号或模拟信号(Analog signal)。为了能够处理模拟信号,必须先将模拟信号进行抽样,使之成为数字信号,然后才能使用数字系统进行传输与处理。所以,抽样是将连续时间信号转换成离散时间信号必要过程。模拟信号经抽样、量化、传输和处理之后,其结果仍然是一个数字信号,为了恢复原始连续时间信号,还需要将数字信号经过所谓的重建(Reconstruction)和平滑滤波(Smoothing)。图4.1展示了信号抽样与信号重建的整个过程。 Antialiasing filter Sampler/ Holder A/D convertor Digital Processor D/A convertor Antialiasing filter 图4.1 模拟信号的数字处理过程 图4.2给出了信号理想抽样的原理图: 图4.2 (a) 抽样原理图,(b) 带限信号的频谱 (a) (b) 上图中,假设连续时间信号是一个带限信号(Bandlimited Signal),其频率范围为,抽样脉冲为理想单位冲激串(Unit Impulse Train),其数学表达式为: 4.1 由图可见,模拟信号x(t)经抽样后,得到已抽样信号(Sampled Signal)xs(t),且: 4.2 将p(t)的数学表达式代入上式得到: 4.3 显然,已抽样信号xs(t) 也是一个冲激串,只是这个冲激串的冲激强度被x(nTs) 加权了。 从频域上来看,p(t) 的频谱也是冲激序列,且为: 4.4 根据傅里叶变换的频域卷积定理,时域两个信号相乘,对应的积的傅里叶变换等于这两个信号的傅里叶变换之间的卷积。所以,已抽样信号xs(t)的傅里叶变换为: 4.5 表达式4.5告诉我们,如果信号x(t)的傅里叶变换为X(j?),则已抽样信号xs(t) 的傅里叶变换Xs(j?)等于无穷多个加权的移位的X(j?)之和,或者说,已抽样信号的频谱等于原连续时间信号的频谱以抽样频率?s为周期进行周期复制的结果。如图4.3所示: 图4.3 信号抽样及其频谱图 由图可见,如果抽样频率不小于信号带宽的2倍时,xs(t) 的频谱中,X(j?)的各个复制品之间没有混叠(Aliasing),因此,可以用一个理想低通滤波器来恢复原始信号。由抽样信号恢复原来的原始信号的过程称为信号的重建( Reconstruction )。反之,如果抽样频率小于信号带宽的2倍时,xs(t) 的频谱中,X(j?)的各个复制品之间的距离(也就是?s)太近,所以必将造成频谱之间的混叠,在这种情况下,是无论如何也无法恢复出原来的连续时间信号的。 由此,我们得出下面的结论:当抽样频率 ?s 2?M 时,将原连续时间信号x(t)抽样而得到的离散时间序列x[n]可以唯一地代表原连续时间信号,或者说,原连续时间信号x(t)可以完全由x[n]唯一地恢复。 以上讨论的是理想抽样的情形,由于理想冲激串是无法实现的,因此,这种理想抽样过程,只能用来在理论上进行抽样过程的分析。在实际抽样中,抽样往往是用一个A/D转换器实现的。一片A/D转换芯片包含有抽样保持电路和量化器。模拟信号经过A/D转换器后,A/D转换器的输出信号就是一个真正意义上的离散时间信号,而不再是冲激串了。 A/D转换器的示意图如图4.4所示。 Holder Quantizer Sampler 图4.4 A/D转换器示意图 上述的实际抽样过程,很容易用简单的数学公式来描述。设连续时间
显示全部
相似文档