文档详情

难点之三 圆周运动的实例分析.doc

发布:2017-05-27约字共13页下载文档
文本预览下载声明
难点之三 圆周运动的实例分析 二、难点突破 (1)匀速圆周运动与非匀速圆周运动 a.圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。 b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。 c.匀速圆周运动只是速度方向改变,而速度大小不变。做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。 例1:如图3-1所示,两根轻绳同系一个质量m=0.1kg的小球,两绳的另一端分别固定在轴上的A、B两处,上面绳AC长L=2m,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s时,上下两轻绳拉力各为多少? 【】【】BC刚好被拉直,但其拉力T2恰为零,设此时角速度为ω1,AC绳上拉力设为T1,对小球有: ① ② 代入数据得: , 要使BC绳有拉力,应有ωω1,当AC绳恰被拉直,但其拉力T1恰为零,设此时角速度为ω2,BC绳拉力为T2,则有 ③ T2sin45°=mLACsin30°④ 代入数据得:ω2=3.16rad/s。要使AC绳有拉力,必须ωω2,依题意ω=4rad/sω2,故AC绳已无拉力,AC绳是松驰状态,BC绳与杆的夹角θ45°,对小球有: T2cosθ=m ω2LBCsin θ ⑤ 而LACsin30°=LBCsin45° LBC=m ⑥ 由⑤、⑥可解得 ; 【】如图所示为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮半径为4r,小轮半径为2r,b点在小轮上,到小轮中心距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则A.a点与b点线速度大小相等B.a点与c点角速度大小相等C.a点与d点向心加速度大小相等D.a、b、c、d四点,加速度最小的是b点【】 分析本题的关键有两点:其一是同一轮轴上的各点角速度相同;其二是皮带不打滑时,与皮带接触的各点线速度相同这两点抓住了,然后再根据描述圆周运动的各物理量之间的关系就不难得出正确的结论【】由图可知,a点和c点是与皮带接触的两个点,所以在传动过程中二者的线速度相等,即va=vc,又v=ωR, 所以ωar=ωc·2r,即ωa=2ωc.而b、c、d三点在同一轮轴上,它们的角速度相等,则ωb=ωc=ωd=ωa,所以选项B错.又vb=ωb·r= ωar=,所以选项A也错.向心加速度:aa=ωa2r;ab=ωb2·r=()2r=ωa2r=aa;ac=ωc2·2r=(ωa)2·2r= ωa2r=aa;ad=ωd2·4r=(ωa)2·4r=ωa2r=aa.所以选项C、D均正确【】在皮带传动装置中,从动轮的转动是静摩擦力用的结果.从动轮的摩擦力带动轮子转动,故轮子受到的摩擦力方向沿从动轮的切线与轮的转动方向相同;主动轮靠摩擦力带动皮带,故主动轮所受摩擦力方向沿轮的切线与轮的转动方向相反a.向心力是根据力的效果命名的.在分析做圆周运动的质点受力情况时,在物体的作用力(重力、弹力、摩擦力等)以外再添加一个向心力b.对于匀速圆周运动的问题,一般可按如下步骤进行分析: ①确定做匀速圆周运动的物体作为研究对象。 ②明确运动情况,包括搞清运动速率v,轨迹半径R及轨迹圆心O的位置等。只有明确了上述几点后,才能知道运动物体在运动过程中所需的向心力大小( mv2/R )和向心力方向(指向圆心)。 ③分析受力情况,对物体实际受力情况做出正确的分析,画出受力图,确定指向圆心的合外力F(即提供向心力)。 ④选用公式F=m=mRω2=mR解得结果。 c.圆周运动中向心力的特点: ①匀速圆周运动:由于匀速圆周运动仅是速度方向变化而速度大小不变,故只存在向心加速度,物体受到外力的合力就是向心力。可见,合外力大小不变,方向始终与速度方向垂直且指向圆心,是物体做匀速圆周运动的条件。 ②变速圆周运动:速度大小发生变化,向心加速度和向心力都会相应变化。求物体在某一点受到的向心力时,应使用该点的瞬时速度,在变速圆周运动中,合外力不仅大小随时间改变,其方向也不沿半径指向圆心。合外力沿半径方向的分力(或所有外力沿半径方向的分力的矢量和)提供向心力,使物体产生向心加速度,改变速度的方向;合外力沿轨道切线方向的分力,使物体产生切向加速度,改变速度的大小。 ③当物体所受的合外力
显示全部
相似文档