文档详情

初中几何辅助线大全-最全.doc

发布:2017-05-25约1.21万字共29页下载文档
文本预览下载声明
三角形中作辅助线的常用方法举例 一、延长已知边构造三角形: 例如:如图7-1:已知AC=BD,AD⊥AC于A ,BC⊥BD于B, 求证:AD=BC 分析:欲证 AD=BC,先证分别含有AD,BC的三角形全等,有几种方案:△ADC与△BCD,△AOD与△BOC,△ABD与△BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角。 证明:分别延长DA,CB,它们的延长交于E点, ∵AD⊥AC BC⊥BD (已知) ∴∠CAE=∠DBE =90° (垂直的定义) 在△DBE与△CAE中 ∵ ∴△DBE≌△CAE (AAS) ∴ED=EC EB=EA (全等三角形对应边相等) ∴ED-EA=EC-EB 即:AD=BC。 (当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。) 二 、连接四边形的对角线,把四边形的问题转化成为三角形来解决。 三、有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图9-1:在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E 。求证:BD=2CE 分析:要证BD=2CE,想到要构造线段2CE,同时CE与∠ABC的平分线垂直,想到要将其延长。 证明:分别延长BA,CE交于点F。 ∵BE⊥CF (已知) ∴∠BEF=∠BEC=90° (垂直的定义) 在△BEF与△BEC中, ∵ ∴△BEF≌△BEC(ASA)CF (全等三角形对应边相等) ∵∠BAC=90° BE⊥CF (已知) ∴∠BAC=∠CAF=90° ∠1+∠BDA=90°∠1+∠BFC=90° ∴∠BDA=∠BFC 在△ABD与△ACF中 ∴△ABD≌△ACF (AAS)∴BD=CF (全等三角形对应边相等) ∴BD=2CE 四、取线段中点构造全等三有形。 例如:如图11-1:AB=DC,∠A=∠D 求证:∠ABC=∠DCB。 分析:由AB=DC,∠A=∠D,想到如取AD的中点N,连接NB,NC,再由SAS公理有△ABN≌△DCN,故BN=CN,∠ABN=∠DCN。下面只需证∠NBC=∠NCB,再取BC的中点M,连接MN,则由SSS公理有△NBM≌△NCM,所以∠NBC=∠NCB。问题得证。 证明:取AD,BC的中点N、M,连接NB,NM,NC。则AN=DN,BM=CM,在△ABN和△DCN中 ∵ ∴△ABN≌△DCN (SAS) ∴∠ABN=∠DCN NB=NC (全等三角形对应边、角相等) 在△NBM与△NCM中 ∵ ∴△NMB≌△NCM,(SSS) ∴∠NBC=∠NCB (全等三角形对应角相等)∴∠NBC+∠ABN =∠NCB+∠DCN 即∠ABC=∠DCB。 巧求三角形中线段的比值 例1. 如图1,在△ABC中,BD:DC=1:3,AE:ED=2:3,求AF:FC。 解:过点D作DG//AC,交BF于点G 所以DG:FC=BD:BC 因为BD:DC=1:3 所以BD:BC=1:4 即DG:FC=1:4,FC=4DG 因为DG:AF=DE:AE 又因为AE:ED=2:3 所以DG:AF=3:2 即 所以AF:FC=:4DG=1:6 例2. 如图2,BC=CD,AF=FC,求EF:FD 解:过点C作CG//DE交AB于点G,则有EF:GC=AF:AC 因为AF=FC 所以AF:AC=1:2 即EF:GC=1:2, 因为CG:DE=BC:BD 又因为BC=CD 所以BC:BD=1:2 CG:DE=1:2 即DE=2GC 因为FD=ED-EF= 所以EF:FD= 小结:以上两例中,辅助线都作在了“已知”条件中出现的两条已知线段的交点处,且所作的辅助线与结论中出现的线段平行。请再看两例,让我们感受其中的奥妙! 例3. 如图3,BD:DC=1:3,AE:EB=2:3,求AF:FD。 解:过点B作BG//AD,交CE延长线于点G。 所以DF:BG=CD:CB 因为BD:DC=1:3 所以CD:CB=3:4 即DF:BG=3:4, 因为AF:BG=AE:EB 又因为AE:EB=2:3 所以AF:BG=2:3 即 所以AF:DF= 例4. 如图4,BD:DC=1:3,AF=FD,求EF:FC。 解:过点D作DG//CE,交AB于点G 所以EF:DG=AF:AD
显示全部
相似文档