【三维设计】届高考数学一轮复习(基础知识+高频考点+解题训练)双曲线教学案.doc
文本预览下载声明
双_曲_线
[知识能否忆起]
1.双曲线的定义
平面内与定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.
2.双曲线的标准方程和几何性质标准方程 -=1(a0,b0) -=1(a0,b0) 图形 性质 范围 x≥a或x≤-a y≤-a或y≥a 对称性 对称轴:坐标轴对称中心:原点 对称轴:坐标轴对称中心:原点 顶点 A1(-a,0),A2(a,0) A1(0,-a),A2(0,a) 渐近线 y=±x y=±x 离心率 e=,e(1,+∞),其中c= 实虚轴 线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长 通径 过焦点垂直于实轴的弦叫通径,其长为 a、b、c的关系 c2=a2+b2(ca0,cb0)
[小题能否全取]
1.(教材习题改编)若双曲线方程为x2-2y2=1,则它的左焦点的坐标为( )
A. B.
C. D.
解析:选C 双曲线方程可化为x2-=1,
a2=1,b2=.c2=a2+b2=,c=.
左焦点坐标为.
2.(教材习题改编)若双曲线-y2=1的一个焦点为(2,0),则它的离心率为( )
A. B.
C. D.2
解析:选C 依题意得a2+1=4,a2=3,
故e===.
3.设F1,F2是双曲线x2-=1的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则PF1F2的面积等于( )
A.4 B.8
C.24 D.48
解析:选C 由P是双曲线上的一点和3|PF1|=4|PF2|可知,|PF1|-|PF2|=2,解得|PF1|=8,|PF2|=6.又|F1F2|=2c=10,所以PF1F2为直角三角形,所以PF1F2的面积S=×6×8=24.
4.双曲线-y2=1(a>0)的离心率为2,则该双曲线的渐近线方程为________________.
解析:由题意知= =2,解得a=,故该双曲线的渐近线方程是x±y=0,即y=±x.
答案:y=±x
5.已知F1(0,-5),F2(0,5),一曲线上任意一点M满足|MF1|-|MF2|=8,若该曲线的一条渐近线的斜率为k,该曲线的离心率为e,则|k|·e=________.
解析:根据双曲线的定义可知,该曲线为焦点在y轴上的双曲线的上支,
c=5,a=4,b=3,e==,|k|=.
|k|·e=×=.
答案:
1.区分双曲线与椭圆中a、b、c的关系,在椭圆中a2=b2+c2,而在双曲线中c2=a2+b2.双曲线的离心率e>1;椭圆的离心率e(0,1).
2.渐近线与离心率:
-=1(a0,b0)的一条渐近线的斜率为= = =.可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.
[注意] 当ab0时,双曲线的离心率满足1e;
当a=b0时,e=(亦称为等轴双曲线);
当ba0时,e.
3.直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.
双曲线的定义及标准方程
典题导入
[例1] (1)(2012·湖南高考)已知双曲线C:-=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为( )
A.-=1 B.-=1
C.-=1 D.-=1
(2)(2012·辽宁高考)已知双曲线x2-y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1PF2,则|PF1|+|PF2|的值为________.
[自主解答] (1)-=1的焦距为10,
c=5=.
又双曲线渐近线方程为y=±x,且P(2,1)在渐近线上,=1,即a=2b.
由解得a=2,b=.
(2)不妨设点P在双曲线的右支上,因为PF1PF2,
所以(2)2=|PF1|2+|PF2|2,
又因为|PF1|-|PF2|=2,所以(|PF1|-|PF2|)2=4,可得2|PF1|·|PF2|=4,
则(|PF1|+|PF2|)2=|PF1|2+|PF2|2+2|PF1|·|PF2|=12,所以|PF1|+|PF2|=2.
[答案] (1)A (2)2
由题悟法
1.应用双曲线的定义需注意的问题
在双曲线的定义中要注意双曲线上的点(动点)具备的几何条件,即“到两定点(焦点)的距离之差的绝对值为一常数,且该常数必须小于两定点的距离”.若定义中的“绝对值”去掉,点的轨迹是双曲线的一支.
2.双曲线方程的求法
(1)若不能明确焦点在哪条坐标轴上,设双曲线方程为mx2+ny
显示全部