历年高考数学(文)知识清单-专题23 数学思想方法及其应用(考点解读)(原卷+解析版).docx
1
专题23数学思想方法及其应用
考情解读
函数与方程思想在高考中也是必考内容,特别是在函数、解析几何、三角函数等处都可能考到,几乎
大多数年份高考中大题都会涉及到.因此认真体会函数与方程思想是成功高考的关键.
在高考题中,数形结合的题目出现在高中数学知识的方方面面上,把图象作为工具、载体,以此寻求
解题思路或制定解题方案,真正体现数形结合的简捷、灵活特点的多是填空小题。
因为对数形结合等思想方法的考查,是对数学知识在更高层次的抽象和概括能力的考查,是对学生思
维品质和数学技能的考查,是新课标高考明确的一个命题方向。
分类讨论思想是历年高考的必考内容,它不仅是高考的重点和热点,也是高考的考点,高考中经常会
有一道解答题,解题思路直接依赖于分类讨论.
预测以后的高考,将会一如既往地考查分类讨论思想,特别在解答题中(尤其导数与函数),将有一道进
行分类、求解的把关题,选择题、填空题也会出现不同情形的分类讨论求解题.
化归与转化的思想在高考中必然考到,主要可能出现在立体几何的大题中,将空间立体几何的问题转化为平面几何问题,解析几何大题中求范围问题的题转化为求函数值域范围问题等,总之将复杂问题转化
为简单问题是高考中解决问题的重要思想方法.
知识点一、函数与方程思想
一般地,函数思想就是构造函数从而利用函数的图象与性质解题,经常利用的性质是:单调性、奇偶性、周期性、最大值和最小值、图象变换等.在解题中,善于挖掘题目的隐含条件,构造出函数解析式和
巧用函数的性质,是应用函数思想的关键,它广泛地应用于方程、不等式、数列等问题.
1.方程思想就是将所求的量(或与所求的量相关的量)设成未知数,用它表示问题中的其他各量,根据
题中的已知条件列出方程(组),通过解方程(组)或对方程(组)进行研究,使问题得到解决.
2.方程思想与函数思想密切相关:方程f(x)=0的解就是函数y=f(x)的图象与x轴的交点的横坐标;函数y=f(x)也可以看作二元方程f(x)-y=0,通过方程进行研究,方程f(x)=a有解,当且仅当a属于函数
f(x)的值域.函数与方程的这种相互转化关系十分重要.
可用函数与方程思想解决的相关问题.
1.函数思想在解题中的应用主要表现在两个方面:
2
(1)借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;
(2)在研究问题中通过建立函数关系式或构造中间函数,把研究的问题化为讨论函数的有关性质,达到
化难为易、化繁为简的目的.
2.方程思想在解题中的应用主要表现在四个方面:
(1)解方程或解不等式;
(2)带参变数的方程或不等式的讨论,常涉及一元二次方程的判别式、根与系数的关系、区间根、区间
上恒成立等知识的应用;
(3)需要转化为方程的讨论,如曲线的位置关系等;
(4)构造方程或不等式求解问题.
知识点二、数形结合的数学思想
数形结合的数学思想:包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为
目的,如应用曲线的方程来精确地阐明曲线的几何性质.。
应用数形结合的思想,应注意以下数与形的转化:
数形结合思想解决的问题常有以下几种:
(1)构建函数模型并结合其图象求参数的取值范围;
(2)构建函数模型并结合其图象研究方程根的范围;
(3)构建函数模型并结合其图象研究量与量之间的大小关系;
(4)构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;
(5)构建立体几何模型研究代数问题;
(6)构建解析几何中的斜率、截距、距离等模型研究最值问题;
(7)构建方程模型,求根的个数;
(8)研究图形的形状、位置关系、性质等.
常见适用数形结合的两个着力点是:
以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何
方法.
以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合。
数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解选择题、填空题时发挥着奇特
3
功效,这就要求我们在平时学习中加强这方面的训练,以提高解题能力和速度.具体操作时,应注意以下几点:(1)准确画出函数图象,注意函数的定义域;(2)用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先要把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出两个函数的图象,由图求解.这种思想方法体现在解题中,就是指在处