7反馈放大器.ppt
文本预览下载声明
* * * * * * * * * * 7.8 负反馈放大电路的稳定性 一、自激振荡产生的原因及条件 二、负反馈放大电路稳定性的分析 三、负反馈放大电路稳定性的判断 四、消除自激振荡的方法 一、自激振荡产生的原因及条件 1. 现象:输入信号为0时,输出有一定幅值、一定频率的信号,称电路产生了自激振荡。 负反馈放大电路自激振荡的频率在低频段或高频段。 低频干扰或产生了轻微低频振荡 高频干扰或产生了轻微高频振荡 实验波形 在电扰动下,如合闸通电,必含有频率为f0的信号,对于f = f0 的信号,产生正反馈过程 输出量逐渐增大,直至达到动态平衡,电路产生了自激振荡。 2. 原因 在低频段或高频段,若存在一个频率f0,且当 f= f0 时附加相移为±π,则 3. 自激振荡的条件 由于电路通电后输出量有一个从小到大直至稳幅的过程,起振条件为 幅值平衡条件 相位平衡条件 二、负反馈放大电路稳定性的分析 ①附加相移由放大电路决定; ②振荡只可能产生在高频段。 设反馈网络为电阻网络,放大电路为直接耦合形式。 因没有满足相位条件的频率,故引入负反馈后不可能振荡。 因没有满足幅值条件的频率,故引入负反馈后不可能振荡。 对于产生-180o附加相移的信号频率,有可能满足起振条件,故引入负反馈后可能振荡。 对于单管放大电路: 对于两级放大电路: 对于三级放大电路: 什么样的放大电路引入负反馈后容易产生自激振荡? 三级或三级以上放大电路引入负反馈后有可能产生高频振荡;同理,耦合电容、旁路电容等为三个或三个以上的放大电路,引入负反馈后有可能产生低频振荡。 放大电路的级数越多,耦合电容、旁路电容越多,引入的负反馈越深,产生自激振荡的可能性越大。 环路放大倍数AF越大,越容易满足起振条件,闭环后越容易产生自激振荡。 三、负反馈放大电路稳定性的判断 已知环路增益的频率特性来判断闭环后电路的稳定性。 使环路增益下降到0dB的频率,记作fc; 使φA+φF=(2n+1)π 的频率,记作f0。 fc f0 fc f0 稳定性的判断 fc f0 满足起振条件 电路不稳定 电路稳定 f0< fc,电路不稳定,会产生自激振荡; f0 > fc,电路稳定,不会产生自激振荡。 fc f0 Gm 幅值裕度 φm 相位裕度 电路稳定 当Gm≤-10dB且φm>45o,才具有可靠的稳定性。 不满足 起振条件 四、消除自激振荡的方法 1. 简单滞后补偿 常用的方法为滞后补偿方法。设放大电路为直接耦合方式,反馈网络为电阻网络。 在最低的上限频率所在回路加补偿电容。 补偿电容 最大附加相移为-135° 具有45°的相位裕度,故电路稳定 补偿前 补偿后 滞后补偿法是以频带变窄为代价来消除自激振荡的。 2. 密勒补偿 在获得同样补偿的情况下,补偿电容比简单滞后补偿的电容小得多。 在最低的上限频率所在放大电路中加补偿电容。 补偿前 补偿后 等效变换 补偿电容 3. RC 滞后补偿:在最低的上限频率所在回路加补偿。 上式表明,最大附加相移为-180o,不满足起振条件,闭环后一定不会产生自激振荡,电路稳定。 补偿电路 RC 滞后补偿与简单滞后补偿比较 简单补偿后的幅频特性 RC滞后补偿后的幅频特性 补偿前 滞后补偿法消振均以频带变窄为代价,RC滞后补偿较简单电容补偿使频带的变化小些。 为使消振后频带变化更小,可考虑采用超前补偿的方法。 讨论 判断电路引入负反馈后有可能产生自激振荡吗?如可能,则应在电路的哪一级加补偿电容? 放大电路中反馈的其它问题 一、放大电路中的正反馈 二、电流反馈型集成运放 三、方框图法解负反馈放大电路 一、放大电路中的正反馈 引入的正、负反馈目标应一致。 自举电路:通过引入正反馈,增大输入电阻,因而提高输入电压。 负反馈 正反馈 两路反馈要分别分析! 二、电流反馈型集成运放 1. 电流模技术 信号传递过程中除与晶体管b-e间电压有关外,其余各参量均为电流量的电路称为电流模电路。 电流源电路可按比例传输电流,故称为电流模电路的单元电路。 优点: (1)只要uCE2>UCES,iO就仅受ICM限制。 (2) iO与iI具有良好的线性关系,不受晶体管非线性特性的影响。 (3)极间电容有低阻回路,电路上限频率高。 2. 由电流反馈型集成运放组成的负反馈放大电路的频率响应 改变R1可改变增益,但上限频率不变,即频带不变,带宽增益积不是常量。 三、方框图法解负反馈放大电路 首先求出负反馈放大电路的基本放大电路及其动态参数、反馈网络和反馈系数,然后求解负反馈放大电路的动态参数,
显示全部